Interleukin-17A Promotes Proliferation and Osteogenic Differentiation of Human Ligamentum Flavum Cells Through Regulation of β-Catenin Signaling

被引:3
|
作者
Lin, Jialiang [1 ,2 ,3 ]
Jiang, Shuai [1 ,2 ,3 ]
Xiang, Qian [1 ,2 ,3 ]
Zhao, Yongzhao [1 ,2 ,3 ]
Wang, Longjie [1 ,2 ,3 ]
Fan, Dongwei [1 ,2 ,3 ]
Zhong, Woquan [1 ,2 ,3 ]
Sun, Chuiguo [1 ,2 ,3 ]
Chen, Zhongqiang [1 ,2 ,3 ]
Li, Weishi [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ Third Hosp, Dept Orthoped, Beijing, Peoples R China
[2] Beijing Key Lab Spinal Dis Res, Beijing, Peoples R China
[3] Minist Educ, Engn Res Ctr Bone & Joint Precis Med, Beijing, Peoples R China
[4] Peking Univ Third Hosp, Dept Orthoped, 49 North Garden Rd, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
beta-catenin; heterotopic ossification; IL-17A; osteogenic differentiation; thoracic ossification of the ligamentum flavum; NF-KAPPA-B; THORACIC OSSIFICATION; CLINICAL-FEATURES; MYELOPATHY; MACROPHAGES; EXPRESSION; IL-17;
D O I
10.1097/BRS.0000000000004789
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Study Design. A basic experimental study.Objective. To elucidate the role and mechanism of interleukin (IL)-17A in thoracic ossification of the ligamentum flavum (TOLF).Summary of Background Data. TOLF is characterized by the replacement of the thoracic ligamentum flavum with ossified tissue and is one of the leading causes of thoracic spinal stenosis. IL-17A is an important member of the IL-17 family that has received widespread attention for its key contributions to the regulation of bone metabolism and heterotopic ossification. However, it is unclear whether IL-17A is involved in TOLF.Materials and Methods. Cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine staining were performed to assess the proliferation of ligamentum flavum cells (LFCs). Alkaline phosphatase activity assay, Alizarin red staining, and protein level expression of osteogenic-related genes were used to evaluate the osteogenic differentiation potential of LFCs. The effect of IL-17A on the proliferation and osteogenic differentiation of LFCs was further assessed after silencing beta-catenin by transfection with small interfering RNA. In addition, the possible source of IL-17A was further demonstrated by coculture assays of T helper 17 (Th17) cells with LFCs. Student t test was used for comparisons between groups, and the one-way analysis of variance, followed by the Tukey post hoc test, was used for comparison of more than two groups.Results. IL-17A was elevated in TOLF tissue compared with normal ligamentum flavum. IL-17A stimulation promoted the proliferation and osteogenic differentiation of LFCs derived from patients with TOLF. We found that IL-17A promoted the proliferation and osteogenic differentiation of LFCs by regulating the beta-catenin signaling. Coculture of Th17 cells with LFCs enhanced beta-catenin signaling-mediated proliferation and osteogenic differentiation of LFCs. However, these effects were markedly attenuated after the neutralization of IL-17A.Conclusions. This is the first work we are aware of to highlight the importance of IL-17A in TOLF. IL-17A secreted by Th17 cells in the ligamentum flavum may be involved in the ossification of the microenvironment by regulating beta-catenin signaling to promote the proliferation and osteogenic differentiation of LFCs.
引用
收藏
页码:E362 / E371
页数:10
相关论文
共 50 条
  • [21] Insulin growth factor-1 promotes the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells through the Wnt/β-catenin pathway
    Feng, Jing
    Meng, Zhiqiang
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 22 (02)
  • [22] M1 macrophage-derived oncostatin M induces osteogenic differentiation of ligamentum flavum cells through the JAK2/STAT3 pathway
    Yang, Jun
    Chen, Guanghui
    Fan, Tianqi
    Qu, Xiaochen
    JOR SPINE, 2024, 7 (01):
  • [23] MicroRNA-374a promotes osteogenic differentiation of periodontal ligament stem cells through directly targeting APC/Wnt/β-catenin signaling pathway
    Cheng, Yaodong
    Cao, Fengdi
    Wu, Jian
    Zhan, Jialin
    Liu, Minyi
    Ou, Lingling
    Chen, Xufeng
    Lai, Renfa
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2017, 10 (06): : 6444 - 6452
  • [24] Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells
    Hung, Shun-Pei
    Ho, Jennifer H.
    Shih, Yu-Ru V.
    Lo, Ting
    Lee, Oscar K.
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2012, 30 (02) : 260 - 266
  • [25] Semaglutide promotes the proliferation and osteogenic differentiation of bone-derived mesenchymal stem cells through activation of the Wnt/LRP5/β-catenin signaling pathway
    Tian, Yawei
    Liu, Huiming
    Bao, Xiaoxue
    Li, Yukun
    FRONTIERS IN PHARMACOLOGY, 2025, 16
  • [26] The Circular RNA circRNA124534 Promotes Osteogenic Differentiation of Human Dental Pulp Stem Cells Through Modulation of the miR-496/β-Catenin Pathway
    Ji, Fang
    Pan, Jing
    Shen, Zhecheng
    Yang, Zhao
    Wang, Jian
    Bai, Xuebing
    Tao, Jiang
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [27] Activating Wnt/β-Catenin Signaling in Osteocytes Promotes Osteogenic Differentiation of BMSCs through BMP-7
    Zhang, Yining
    Zhao, Yixin
    Xie, Zhengsong
    Li, Molin
    Liu, Yujiao
    Tu, Xiaolin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (24)
  • [28] Chlorogenic Acid Promotes Osteogenic Differentiation of Human Dental Pulp Stem Cells Through Wnt Signaling
    Hu, Xiaoping
    Wang, Li
    He, Yuanqiao
    Wei, Minli
    Yan, Huilin
    Zhu, Hongshui
    STEM CELLS AND DEVELOPMENT, 2021, 30 (12) : 641 - 650
  • [29] Length Phosphate promotes osteogenic differentiation through non-canonical Wnt signaling pathway in human mesenchymal stem cells
    Rui, Shumin
    Kubota, Takuo
    Ohata, Yasuhisa
    Yamamoto, Kenichi
    Fujiwara, Makoto
    Takeyari, Shinji
    Ozono, Keiichi
    BONE, 2022, 164
  • [30] PAX3 Promotes Proliferation of Human Glioma Cells by WNT/β-Catenin Signaling Pathways
    Xia Liang
    Zhao Dong
    Wu Bin
    Nie Dekang
    Zhu Xuhang
    Zhang Shuyuan
    Li Liwen
    Jin Kai
    Sun Caixing
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2019, 68 (01) : 66 - 77