Build atmosphere aided texture control in additively manufactured FeCrAl steel by laser powder bed fusion

被引:8
|
作者
Wang, Yanan [1 ,2 ]
Wang, Binbin [1 ]
Luo, Liangshun [1 ,2 ]
Li, Binqiang [5 ]
Su, Baoxian [1 ]
Chen, Dayong [3 ]
Liu, Tong [4 ]
Wang, Liang [1 ]
Su, Yanqing [1 ,2 ]
Guo, Jingjie [1 ,2 ]
Fu, Hengzhi [1 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Natl Key Lab Precis Hot Proc Met, Harbin 150001, Peoples R China
[2] Anhui Chungu 3D Printing Inst Intelligent Equipmen, HIT Chungu Joint Res Ctr Addit Mfg Mat, Wuhu 241200, Peoples R China
[3] Anhui HIT 3D Addit Technol, Wuhu 241200, Anhui, Peoples R China
[4] Anhui Polytech Univ, Sch Mat Sci & Engn, Wuhu 241000, Peoples R China
[5] Western Superconducting Technol Co Ltd, Shaanxi Prov Engn Lab Aerial Mat, Xian 710018, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Laser powder bed fusion (LPBF); Process atmosphere; Crystallographic texture; Epitaxial growth; FeCrAl steel; MICROSTRUCTURE;
D O I
10.1016/j.scriptamat.2023.115806
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Through properly selecting the process atmosphere, involving pure argon gas (Ar) and nitrogen gas (N2), we have achieved the in-situ texture control of laser powder bed fusion (LPBF)-manufactured FeCrAl parts with fixed process parameters. The results, from crystallographic orientation analysis, indicate that a single crystalline-like microstructure is developed under the N2 process atmosphere while printing under the common Ar case results in a chessboard-like microstructure composed of strong fiber texture with (111) along the Z-axis (building direction) and cube texture with (001) parallel to X-, Y-, and Z-axes. The texture control mechanism under different process atmospheres has been elucidated by extracting the corresponding molten pool morphology information, that is flat molten pool for the N2 process atmosphere but keyhole one for the Ar case. The current findings demonstrate the feasibility of utilizing the process atmosphere of additive manufacturing to manipulate the crystallographic texture of metals.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Laser powder bed fusion additive manufacturing of molybdenum using a nitrogen build atmosphere
    Ramakrishnan, Tejas
    Espiritu, Eileen R. L.
    Kwon, Sunyong
    Keshavarz, Mohsen K.
    Muniz-Lerma, Jose A.
    Gauvin, Raynald
    Brochu, Mathieu
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2024, 119
  • [22] Effect of hatch spacing and laser power on microstructure, texture, and thermomechanical properties of laser powder bed fusion (L-PBF) additively manufactured NiTi
    Saghaian, Sayed Ehsan
    Nematollahi, Mohammadreza
    Toker, Guher
    Hinojos, Alejandro
    Moghaddam, Narges Shayesteh
    Saedi, Soheil
    Lu, Charles Y.
    Mahtabi, Mohammad Javad
    Mills, Michael J.
    Elahinia, Mohammad
    Karaca, Haluk E.
    OPTICS AND LASER TECHNOLOGY, 2022, 149
  • [23] Corrosion Properties of Powder Bed Fusion Additively Manufactured 17-4 PH Stainless Steel
    Schaller, Rebecca F.
    Taylor, Jason M.
    Rodelas, Jeffrey
    Schindelholz, Eric J.
    CORROSION, 2017, 73 (07) : 796 - 807
  • [24] Precipitate Size in GRCop-84 Gas Atomized Powder and Laser Powder Bed Fusion Additively Manufactured Material
    Seltzman, A. H.
    Wukitch, S. J.
    FUSION SCIENCE AND TECHNOLOGY, 2021, 77 (7-8) : 641 - 646
  • [25] Microstructure and Deformation Behavior of Additively Manufactured 17-4 Stainless Steel: Laser Powder Bed Fusion vs. Laser Powder Directed Energy Deposition
    Nezhadfar, P. D.
    Gradl, Paul R.
    Shao, Shuai
    Shamsaei, Nima
    JOM, 2022, 74 (03) : 1136 - 1148
  • [26] High strength WE43 microlattice structures additively manufactured by laser powder bed fusion
    Hyer, Holden
    Zhou, Le
    Liu, Qingyang
    Wu, Dazhong
    Song, Shutao
    Bai, Yuanli
    McWilliams, Brandon
    Cho, Kyu
    Sohn, Yongho
    MATERIALIA, 2021, 16
  • [27] On the Fabrication of High-Performance Additively Manufactured Copper Winding Using Laser Powder Bed Fusion
    Abdelhafiz, Mohamed
    Emadi, Ali
    Elbestawi, Mohamed A. A.
    MATERIALS, 2023, 16 (13)
  • [28] Deep learning based porosity prediction for additively manufactured laser powder-bed fusion parts
    Mohammed, Anwaruddin Siddiqui
    Almutahhar, Mosa
    Sattar, Karim
    Alhajeri, Ali
    Nazir, Aamer
    Ali, Usman
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 : 7330 - 7335
  • [29] RESIDUAL STRESS MEASUREMENT USING NANOINDENTATION ON PARTS ADDITIVELY MANUFACTURED BY LASER POWDER BED FUSION (LPBF)
    Nguyen, Dan T.
    Haridas, Ravi Sankar
    Mirshams, Reza A.
    Siller, Hector R.
    PROCEEDINGS OF ASME 2024 19TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, MSEC2024, VOL 1, 2024,
  • [30] Texture evolution in a CrMnFeCoNi high-entropy alloy manufactured by laser powder bed fusion
    X. Y. He
    H. Wang
    Z. G. Zhu
    L. Z. Wang
    J. Q. Liu
    N. Haghdadi
    S. M. L. Nai
    J. Huang
    S. Primig
    S. P. Ringer
    X. Z. Liao
    Journal of Materials Science, 2022, 57 : 9714 - 9725