Symptom tracking in endometriosis using digital technologies: Knowns, unknowns, and future prospects

被引:4
作者
Edgley, Katherine [1 ,2 ]
Horne, Andrew W. [1 ,2 ]
Saunders, Philippa T. K. [3 ]
Tsanas, Athanasios [4 ,5 ]
机构
[1] Univ Edinburgh, EXPPECT, Edinburgh EH16 4UU, Midlothian, Scotland
[2] Univ Edinburgh, MRC Ctr Reprod Hlth, Edinburgh EH16 4UU, Scotland
[3] Univ Edinburgh, Ctr Inflammat Res, Edinburgh EH16 4UU, Scotland
[4] Univ Edinburgh, Usher Inst, Edinburgh Med Sch, Edinburgh EH16 4UX, Scotland
[5] Alan Turing Inst, London NW1 2DB, England
关键词
SLEEP; PAIN; FIBROMYALGIA; FRAGMENTATION; IMPACT;
D O I
10.1016/j.xcrm.2023.101192
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Endometriosis is a common chronic pain condition with no known cure and limited treatment options. Digital technologies, ranging from smartphone apps to wearable sensors, have shown potential toward facilitating chronic pain assessment and management; however, to date, many of these tools have not been specifically deployed or evaluated in patients with endometriosis-associated pain. Informed by previous studies in related chronic pain conditions, we discuss how digital technologies may be used in endometriosis to facilitate objective, continuous, and holistic symptom tracking. We postulate that these pervasive and increasingly affordable technologies present promising opportunities toward developing decision-support tools assisting healthcare professionals and empowering patients with endometriosis to make better-informed choices about symptom management.
引用
收藏
页数:11
相关论文
共 78 条
  • [1] Co-occurrence of pain syndromes
    Affaitati, Giannapia
    Costantini, Raffaele
    Tana, Claudio
    Cipollone, Francesco
    Giamberardino, Maria Adele
    [J]. JOURNAL OF NEURAL TRANSMISSION, 2020, 127 (04) : 625 - 646
  • [2] Albert PS, 1999, STAT MED, V18, P1707, DOI 10.1002/(SICI)1097-0258(19990715)18:13<1707::AID-SIM138>3.0.CO
  • [3] 2-H
  • [4] Predictors of Clinical Pain in Fibromyalgia: Examining the Role of Sleep
    Anderson, Ryan J.
    McCrae, Christina S.
    Staud, Roland
    Berry, Richard B.
    Robinson, Michael E.
    [J]. JOURNAL OF PAIN, 2012, 13 (04) : 350 - 358
  • [5] Wearable electronic devices for chronic pain intensity assessment: A systematic review
    Avila, Francisco R.
    McLeod, Christopher J.
    Huayllani, Maria T.
    Boczar, Daniel
    Giardi, Davide
    Bruce, Charles J.
    Carter, Rickey E.
    Forte, Antonio J.
    [J]. PAIN PRACTICE, 2021, 21 (08) : 955 - 965
  • [6] Pain and Fatigue Variability Patterns Distinguish Subgroups of Fibromyalgia Patients
    Bartley, Emily J.
    Robinson, Michael E.
    Staud, Roland
    [J]. JOURNAL OF PAIN, 2018, 19 (04) : 372 - 381
  • [7] Next-Generation Psychiatric Assessment: Using Smartphone Sensors to Monitor Behavior and Mental Health
    Ben-Zeev, Dror
    Scherer, Emily A.
    Wang, Rui
    Xie, Haiyi
    Campbell, Andrew T.
    [J]. PSYCHIATRIC REHABILITATION JOURNAL, 2015, 38 (03) : 218 - 226
  • [8] Machine learning algorithms as new screening approach for patients with endometriosis
    Bendifallah, Sofiane
    Puchar, Anne
    Suisse, Stephane
    Delbos, Lea
    Poilblanc, Mathieu
    Descamps, Philippe
    Golfier, Francois
    Touboul, Cyril
    Dabi, Yohann
    Darai, Emile
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] Berengueres J, 2016, IEEE ENG MED BIO, P271, DOI 10.1109/EMBC.2016.7590692
  • [10] Nightly sleep duration, fragmentation, and quality and daily risk of migraine
    Bertisch, Suzanne M.
    Li, Wenyuan
    Buettner, Catherine
    Mostofsky, Elizabeth
    Rueschman, Michael
    Kaplan, Emily R.
    Fung, Jacqueline
    Huntington, Shaelah
    Murphy, Tess
    Stead, Courtney
    Burstein, Rami
    Redline, Susan
    Mittleman, Murray A.
    [J]. NEUROLOGY, 2020, 94 (05) : E489 - E496