Physical Realization of Measurement Based Quantum Computation

被引:3
作者
Kashif, Muhammad [1 ]
Al-Kuwari, Saif [1 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci & Engn, Div Informat & Comp Technol, Doha, Qatar
关键词
Continuous variables cluster states; discrete variables cluster states; measurement based quantum computation; one-way quantum computation; physical realization; quantum computation; VARIABLE CLUSTER STATES; PODOLSKY-ROSEN PARADOX; MULTIPARTICLE ENTANGLEMENT; DETERMINISTIC GENERATION; MECHANICAL DESCRIPTION; SEPARABILITY; DISCRETE; COMPUTER; REALITY;
D O I
10.1109/ACCESS.2023.3289005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum computers, leveraging the principles of quantum mechanics, hold the potential to surpass classical computers in numerous applications, with implications across various domains. Besides the well-known gate model, Measurement-based Quantum Computation (MBQC) is another promising computational approach to achieve universal quantum computation. In MBQC, large ensembles of qubits are prepared in a highly entangled cluster state, forming the basis for executing quantum computations through sequential measurements. Cluster states are realized using both continuous variables (CV) and discrete variables (DV) techniques. In the CV-based methods, Frequency Domain Multiplexing (FDM), Time Domain Multiplexing (TDM), Spatial Domain Multiplexing (SDM), and hybrid schemes are employed. This paper thoroughly discusses and compares these approaches, elucidating their strengths and limitations. Additionally, the generation of photonic cluster states in DV is explored and some recent results are reported. Some recent state-of-the-art advancements in photonic and superconducting qubits entanglement, which can potentially serve as cluster states, are also presented. Finally, we highlight the approach that exhibits the most promising characteristics for achieving efficient cluster state realization in the context of MBQC.
引用
收藏
页码:90105 / 90130
页数:26
相关论文
共 193 条
  • [1] One-way quantum computing in superconducting circuits
    Albarran-Arriagada, F.
    Alvarado Barrios, G.
    Sanz, M.
    Romero, G.
    Lamata, L.
    Retamal, J. C.
    Solano, E.
    [J]. PHYSICAL REVIEW A, 2018, 97 (03)
  • [2] Adiabatic quantum computation
    Albash, Tameem
    Lidar, Daniel A.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [3] One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator
    Alexander, Rafael N.
    Wang, Pei
    Sridhar, Niranjan
    Chen, Moran
    Pfister, Olivier
    Menicucci, Nicolas C.
    [J]. PHYSICAL REVIEW A, 2016, 94 (03)
  • [4] Andersen UL, 2015, NAT PHYS, V11, P713, DOI [10.1038/nphys3410, 10.1038/NPHYS3410]
  • [5] Programmable multimode quantum networks
    Armstrong, Seiji
    Morizur, Jean-Francois
    Janousek, Jiri
    Hage, Boris
    Treps, Nicolas
    Lam, Ping Koy
    Bachor, Hans-A.
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [6] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [7] Generation of time-domain-multiplexed two-dimensional cluster state
    Asavanant, Warit
    Shiozawa, Yu
    Yokoyama, Shota
    Charoensombutamon, Baramee
    Emura, Hiroki
    Alexander, Rafael N.
    Takeda, Shuntaro
    Yoshikawa, Jun-ichi
    Menicucci, Nicolas C.
    Yonezawa, Hidehiro
    Furusawa, Akira
    [J]. SCIENCE, 2019, 366 (6463) : 373 - +
  • [8] Ayanzadeh R, 2019, Arxiv, DOI arXiv:1901.00088
  • [9] Generation of hyperentangled photon pairs
    Barreiro, JT
    Langford, NK
    Peters, NA
    Kwiat, PG
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (26)
  • [10] Training deep quantum neural networks
    Beer, Kerstin
    Bondarenko, Dmytro
    Farrelly, Terry
    Osborne, Tobias J.
    Salzmann, Robert
    Scheiermann, Daniel
    Wolf, Ramona
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)