The invariant manifold approach applied to global long-time dynamics of FitzHugh-Nagumo systems 

被引:0
作者
Zhao, Jia-Cheng [1 ]
Wang, Rong-Nian [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
FitzHugh-Nagumo system; High-dimensional space; Global finite-dimensional manifold; Uniform attracting; INERTIAL MANIFOLDS; SMOLUCHOWSKI EQUATION;
D O I
10.1016/j.jde.2023.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the FitzHugh-Nagumo system equipped with boundary condition of Dirichlet type on some two/three-dimensional domains. This system describes the signal transmission across the axonal membrane in neurophysiology. It is a semilinear parabolic PDE for the voltage variable coupled with a first-order ODE of space-time type for the recovery variable. We prove that there exists a finite-dimensional global manifold in the case of the fast recovery variable. Since the manifold is uniformly attracting, it gives geometric insight into the global long-time dynamics of the solutions. The proof is based on an abstract invariant manifold theorem for dynamical systems on a Banach space. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:120 / 155
页数:36
相关论文
共 3 条
  • [1] Long-Time Behavior of Non-Autonomous FitzHugh-Nagumo Lattice Systems
    Wannan, Rania T.
    Abdallah, Ahmed Y.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (03)
  • [2] Global Dynamical Behavior of FitzHugh-Nagumo Systems with Invariant Algebraic Surfaces
    Zhang, Liwei
    Yu, Jiang
    Zhang, Xiang
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (01)
  • [3] Dynamics of the FitzHugh-Nagumo system having invariant algebraic surfaces
    Llibre, Jaume
    Tian, Yuzhou
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):