An encoder framework for taxi-demand prediction using spatio-temporal function approximation

被引:1
|
作者
Bhanu, Manish [1 ]
Roy, Saswata [1 ]
Priya, Shalini [2 ]
Mendes-Moreira, Joao [3 ]
Chandra, Joydeep [1 ]
机构
[1] Indian Inst Technol Patna, Dept Comp Sci & Engn, Dayalpur Daulatpur, Bihar, India
[2] Oak Ridge Natl Lab, Oak Ridge, TN USA
[3] Univ Porto, Fac Engn, Dept Informat Engn, Porto, Portugal
关键词
Spatio-temporal; Encoder-decoder; Multi-step prediction; Time-series; Taxi-demand; TENSOR;
D O I
10.1016/j.engappai.2023.106760
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Predicting taxi demands in large cities can help in better traffic management as well as ensure better commuter satisfaction for an intelligent transportation system. However, the traffic demands across different locations have varying spatio-temporal correlations that are difficult to model. Despite the ability of the existing Deep Neural Network (DNN) models to capture the non-linearity in spatial and temporal characteristics of the demand time-series, capturing spatio-temporal characteristics in different real-world scenarios like varying historic and prediction time frame, spatio-temporal variations due to noise or missing data, etc. still remain a big challenge for the state-of-the-art models. In this paper, we introduce Encoder-ApproXimator (EnAppX), an encoder-decoder DNN-based model that uses Chebyshev function approximation in the decoding stage for taxi demand times-series prediction and can better estimate the time-series in the presence of large spatio-temporal variations. Opposed to any existing state-of-the-art model, the proposed model approximates complete spatiotemporal characteristics in the frequency domain which in turn enables the model to make a robust and improved prediction in different scenarios. Validation over two real-world taxi datasets from different cities shows a considerable improvement of around 23% in RMSE scores compared to the state-of-the-art baseline model. Unlike several existing state-of-the-art models, EnAppX also produces improved prediction accuracy across two regions for both to and fro demands.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] LEFT ENDOCARDIUM SEGMENTATION USING SPATIO-TEMPORAL METAMORPHS
    Cui, Xinyi
    Zhang, Shaoting
    Huang, Junzhou
    Huang, Xiaolei
    Metaxas, Dimitris N.
    Axel, Leon
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 226 - 229
  • [42] Using treemaps for variable selection in spatio-temporal visualisation
    Slingsby, Aidan
    Dykes, Jason
    Wood, Jo
    INFORMATION VISUALIZATION, 2008, 7 (3-4) : 210 - 224
  • [43] Expression recognition using fuzzy spatio-temporal modeling
    Xiang, T.
    Leung, M. K. H.
    Cho, S. Y.
    PATTERN RECOGNITION, 2008, 41 (01) : 204 - 216
  • [44] Spatio-Temporal Analysis and Prediction by Logistic Regression of Respiratory Diseases in India
    Subramani, Priyanka
    Dhakshnamoorthy, Kalpanapriya
    CONTEMPORARY MATHEMATICS, 2025, 6 (01): : 346 - 366
  • [45] A Survey of Traffic Prediction: from Spatio-Temporal Data to Intelligent Transportation
    Yuan, Haitao
    Li, Guoliang
    DATA SCIENCE AND ENGINEERING, 2021, 6 (01) : 63 - 85
  • [46] A new method for spatio-temporal transmission prediction of COVID-19
    Wang, Peipei
    Liu, Haiyan
    Zheng, Xinqi
    Ma, Ruifang
    CHAOS SOLITONS & FRACTALS, 2023, 167
  • [47] AM-ConvGRU: a spatio-temporal model for typhoon path prediction
    Guangning Xu
    Di Xian
    Philippe Fournier-Viger
    Xutao Li
    Yunming Ye
    Xiuqing Hu
    Neural Computing and Applications, 2022, 34 : 5905 - 5921
  • [48] STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow Prediction
    Bhaumik, Kishor Kumar
    Niloy, Fahim Faisal
    Mahmud, Saif
    Woo, Simon S.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT VI, PAKDD 2024, 2024, 14650 : 288 - 299
  • [49] Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study
    Ahmed, Irfan
    Kumara, Indika
    Reshadat, Vahideh
    Kayes, A. S. M.
    van den Heuvel, Willem-Jan
    Tamburri, Damian A.
    ELECTRONICS, 2022, 11 (01)
  • [50] Spatio-Temporal Visualization Model for Movie Success Prediction Based on Tweets
    Wijekoon, A. W. M. K. S. A.
    Sandanayake, T. C.
    Jayawardena, K. D. A. A.
    Buddhini, A. L. Y.
    Ariyawansha, U. K. D. G. S.
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (ICIT 2017), 2017, : 227 - 231