Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals

被引:18
作者
Cardona, Fernando Arteaga [1 ]
Jain, Noopur [2 ,3 ]
Popescu, Radian [4 ]
Busko, Dmitry [1 ]
Madirov, Eduard [1 ]
Arus, Bernardo A. A. [5 ,6 ,7 ,8 ,9 ,10 ]
Gerthsen, Dagmar [4 ]
De Backer, Annick [2 ,3 ]
Bals, Sara [2 ,3 ]
Bruns, Oliver T. T. [5 ,6 ,7 ,8 ,9 ,10 ]
Chmyrov, Andriy [5 ,6 ,7 ,8 ,9 ,10 ]
Van Aert, Sandra [2 ,3 ]
Richards, Bryce S. S. [1 ,11 ]
Hudry, Damien [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Microstruct Technol, Karlsruhe, Germany
[2] Univ Antwerp, EMAT, Antwerp, Belgium
[3] Univ Antwerp, NANOlab Ctr Excellence, Antwerp, Belgium
[4] Karlsruhe Inst Technol, Lab Electron Microscopy, Karlsruhe, Germany
[5] Helmholtz Ctr Munich, Helmholtz Pioneer Campus, Munich, Germany
[6] Natl Ctr Tumor Dis NCT UCC, Funct Imaging Surg Oncol, Dresden, Germany
[7] German Canc Res Ctr, Heidelberg, Germany
[8] Tech Univ Dresden, Med Fak, Dresden, Germany
[9] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[10] Helmholtz Zentrum Dresden Rossendorf HZDR, Dresden, Germany
[11] Karlsruhe Inst Technol, Light Technol Inst, Karlsruhe, Germany
基金
欧洲研究理事会;
关键词
LUMINESCENCE ENHANCEMENT; NANOPARTICLES; EMISSION; PHOTOLUMINESCENCE; NANOPROBES;
D O I
10.1038/s41467-023-40031-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (& alpha;-NaYF4) or heterogeneous (CaF2) shell domains on optically-active & alpha;-NaYF4:Yb:Er (with and without Ce3+ co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm(2); one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm. Controlling cation intermixing in rare-earth based core-shell nanomaterials is a key strategy to improve the emission properties. Here the authors address this challenge by controlling the growth of heterogeneous structures, obtaining 50% short-wavelength infrared quantum yield in sub-15 nm Ce-doped & alpha;-NaYF4:Yb:Er@CaF2 nanocrystals.
引用
收藏
页数:14
相关论文
共 58 条
  • [1] Self-illuminating NIR-II bioluminescence imaging probe based on silver sulfide quantum dots
    Afshari, Mohammad Javad
    Li, Cang
    Zeng, Jianfeng
    Cui, Jiabin
    Wu, Shuwang
    Gao, Mingyuan
    [J]. ACS NANO, 2022, 16 (10) : 16824 - 16832
  • [2] The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene
    Algara-Siller, Gerardo
    Kurasch, Simon
    Sedighi, Mona
    Lehtinen, Ossi
    Kaiser, Ute
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (20)
  • [3] Tracking the Motion of Lanthanide Ions within Core-Shell-Shell NaYF4 Nanocrystals via Resonance Energy Transfer
    Bastian, Philipp U.
    Nacak, Selma
    Roddatis, Vladimir
    Kumke, Michael U.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (20) : 11229 - 11238
  • [4] Next-generation in vivo optical imaging with short-wave infrared quantum dots
    Bruns, Oliver T.
    Bischof, Thomas S.
    Harris, Daniel K.
    Franke, Daniel
    Shi, Yanxiang
    Riedemann, Lars
    Bartelt, Alexander
    Jaworski, Frank B.
    Carr, Jessica A.
    Rowlands, Christopher J.
    Wilson, Mark W. B.
    Chen, Ou
    Wei, He
    Hwang, Gyu Weon
    Montana, Daniel M.
    Coropceanu, Igor
    Achorn, Odin B.
    Kloepper, Jonas
    Heeren, Joerg
    So, Peter T. C.
    Fukumura, Dai
    Jensen, Klavs F.
    Jain, Rakesh K.
    Bawendi, Moungi G.
    [J]. NATURE BIOMEDICAL ENGINEERING, 2017, 1 (04):
  • [5] Core/Shell NaGdF4:Nd3+/NaGdF4 Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications
    Chen, Guanying
    Ohulchanskyy, Tymish Y.
    Liu, Sha
    Law, Wing-Cheung
    Wu, Fang
    Swihart, Mark T.
    Agren, Hans
    Prasad, Pares N.
    [J]. ACS NANO, 2012, 6 (04) : 2969 - 2977
  • [6] StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images
    De Backer, A.
    van den Bos, K. H. W.
    Van den Broek, W.
    Sijbers, J.
    Van Aert, S.
    [J]. ULTRAMICROSCOPY, 2016, 171 : 104 - 116
  • [7] An improved experimental determination of external photoluminescence quantum efficiency
    deMello, JC
    Wittmann, HF
    Friend, RH
    [J]. ADVANCED MATERIALS, 1997, 9 (03) : 230 - &
  • [8] Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications
    Du, Pengye
    An, Ran
    Liang, Yuan
    Lei, Pengpeng
    Zhang, Hongjie
    [J]. COORDINATION CHEMISTRY REVIEWS, 2022, 471
  • [9] Study on the Intermixing of Core and Shell in NaEuF4/NaGdF4 Core/Shell Nanocrystals
    Duehnen, Simon
    Haase, Markus
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (24) : 8375 - 8386
  • [10] Long-Lived Second Near-Infrared Luminescent Probes: An Emerging Role in Time-Resolved Luminescence Bioimaging and Biosensing
    Feng, Ruibing
    Li, Guodong
    Ko, Chung-Nga
    Zhang, Zhang
    Wan, Jian-Bo
    Zhang, Qing-Wen
    [J]. SMALL STRUCTURES, 2023, 4 (02):