Bayesian spatio-temporal survival analysis for all types of censoring with application to a wildlife disease study

被引:0
作者
Yao, Kehui [1 ,4 ]
Zhu, Jun [1 ]
O'Brien, Daniel J. [2 ]
Walsh, Daniel [3 ]
机构
[1] Univ Wisconsin Madison, Dept Stat, Madison, WI USA
[2] Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI USA
[3] Univ Montana, Montana Cooperat Wildlife Res Unit, US Geol Survey, Missoula, MT USA
[4] Med Sci Ctr, 1300 Univ Ave Room 1220, Madison, WI 53706 USA
关键词
Bayesian inference; hazards model; INLA; spatio-temporal statistics; WEIBULL DISTRIBUTION; BOVINE TUBERCULOSIS; INFERENCE; MICHIGAN; PREDICTION; MODELS;
D O I
10.1002/env.2823
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this article, we consider modeling arbitrarily censored survival data with spatio-temporal covariates. We demonstrate that under the piecewise constant hazard function, the likelihood for uncensored or right-censored subjects is proportional to the likelihood of multiple conditionally independent Poisson random variables. To address left- or interval-censored subjects, we propose to impute the exact event times and convert them into uncensored subjects, enabling the application of the integrated nested Laplace approximation to update model parameters using the imputed data. We introduce an iterative algorithm that alternates between imputing event times for left- and interval-censored subjects and re-estimating model parameters. The proposed method is assessed through a simulation study and applied to analyze a spatio-temporal survival dataset in a wildlife disease study investigating bovine tuberculosis in white-tailed deer in Michigan.
引用
收藏
页数:13
相关论文
共 43 条
[31]   Bayesian inference in multivariate spatio-temporal areal models using INLA: analysis of gender-based violence in small areas [J].
Vicente, G. ;
Goicoa, T. ;
Ugarte, M. D. .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2020, 34 (10) :1421-1440
[32]   Bayesian inference in multivariate spatio-temporal areal models using INLA: analysis of gender-based violence in small areas [J].
G. Vicente ;
T. Goicoa ;
M. D. Ugarte .
Stochastic Environmental Research and Risk Assessment, 2020, 34 :1421-1440
[33]   Spatio-temporal analysis and simulation pattern of land use/cover changes, case study: Naghadeh, Iran [J].
Parse, Vahid Amini ;
Salehi, Esmail .
JOURNAL OF URBAN MANAGEMENT, 2016, 5 (02) :43-51
[34]   Analysis of the Spatio-Temporal Evolution of Dredging from Satellite Images: A Case Study in the Principality of Asturias (Spain) [J].
Mateo-Perez, Vanesa ;
Corral-Bobadilla, Marina ;
Ortega-Fernandez, Francisco ;
Rodriguez-Montequin, Vicente .
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (03) :1-18
[35]   Clustering Analysis of the Spatio-Temporal On-Street Parking Occupancy Data: A Case Study in Hong Kong [J].
Wu, Fan ;
Ma, Wei .
SUSTAINABILITY, 2022, 14 (13)
[36]   Spatio-temporal evolution characteristics analysis and optimization prediction of urban green infrastructure: a case study of Beijing, China [J].
Ma, Yin ;
Zheng, Xinqi ;
Liu, Menglan ;
Liu, Dongya ;
Ai, Gang ;
Chen, Xueye .
SCIENTIFIC REPORTS, 2022, 12 (01)
[37]   Accessibility to rabies centers and human rabies post-exposure prophylaxis rates in Cambodia: A Bayesian spatio-temporal analysis to identify optimal locations for future centers [J].
Baron, Jerome N. ;
Chevalier, Veronique ;
Ly, Sowath ;
Duong, Veasna ;
Dussart, Philippe ;
Fontenille, Didier ;
Peng, Yik Sing ;
Martinez-Lopez, Beatriz .
PLOS NEGLECTED TROPICAL DISEASES, 2022, 16 (06)
[38]   Quantile regression-based Bayesian joint modeling analysis of longitudinal-survival data, with application to an AIDS cohort study [J].
Zhang, Hanze ;
Huang, Yangxin .
LIFETIME DATA ANALYSIS, 2020, 26 (02) :339-368
[39]   Time-dependent and spatio-temporal statistical analysis of seismicity: application on the complete data set of the 2010 Beni-Ilmane earthquake sequence [J].
Rahmani, Sofiane Taki-Eddine ;
Abacha, Issam ;
Boulahia, Oualid ;
Yelles-Chaouche, Abdelkarim ;
Crespo-Martin, Cristina ;
Roubeche, Khaled .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 236 (03) :1246-1261
[40]   A two-step local smoothing approach for exploring spatio-temporal patterns with application to the analysis of precipitation in the mainland of China during 1986-2005 [J].
Yan, Na ;
Mei, Chang-Lin .
ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (02) :373-390