Bayesian spatio-temporal survival analysis for all types of censoring with application to a wildlife disease study

被引:0
|
作者
Yao, Kehui [1 ,4 ]
Zhu, Jun [1 ]
O'Brien, Daniel J. [2 ]
Walsh, Daniel [3 ]
机构
[1] Univ Wisconsin Madison, Dept Stat, Madison, WI USA
[2] Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI USA
[3] Univ Montana, Montana Cooperat Wildlife Res Unit, US Geol Survey, Missoula, MT USA
[4] Med Sci Ctr, 1300 Univ Ave Room 1220, Madison, WI 53706 USA
关键词
Bayesian inference; hazards model; INLA; spatio-temporal statistics; WEIBULL DISTRIBUTION; BOVINE TUBERCULOSIS; INFERENCE; MICHIGAN; PREDICTION; MODELS;
D O I
10.1002/env.2823
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this article, we consider modeling arbitrarily censored survival data with spatio-temporal covariates. We demonstrate that under the piecewise constant hazard function, the likelihood for uncensored or right-censored subjects is proportional to the likelihood of multiple conditionally independent Poisson random variables. To address left- or interval-censored subjects, we propose to impute the exact event times and convert them into uncensored subjects, enabling the application of the integrated nested Laplace approximation to update model parameters using the imputed data. We introduce an iterative algorithm that alternates between imputing event times for left- and interval-censored subjects and re-estimating model parameters. The proposed method is assessed through a simulation study and applied to analyze a spatio-temporal survival dataset in a wildlife disease study investigating bovine tuberculosis in white-tailed deer in Michigan.
引用
收藏
页数:13
相关论文
共 43 条
  • [1] BAYESIAN MODELS FOR SPATIO-TEMPORAL ASSESSMENT OF DISEASE
    Kang, Su Yun
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (03) : 516 - 518
  • [2] Spatio-temporal Bayesian model selection for disease mapping
    Carroll, Rachel
    Lawson, Andrew B.
    Faes, Christel
    Kirby, Russell S.
    Aregay, Mehreteab
    Watjou, Kevin
    ENVIRONMETRICS, 2016, 27 (08) : 466 - 478
  • [3] Spatio-temporal hierarchical Bayesian analysis of wildfires with Stochastic Partial Differential Equations. A case study from Valencian Community (Spain)
    Juan Verdoy, Pablo
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (05) : 927 - 946
  • [4] Spatio-temporal analysis of plant pests in a greenhouse using a Bayesian approach
    Poncet, Christine
    Lemesle, Valerie
    Mailleret, Ludovic
    Bout, Alexandre
    Boll, Roger
    Vaglio, Joelle
    AGRICULTURAL AND FOREST ENTOMOLOGY, 2010, 12 (03) : 325 - 332
  • [5] Bayesian penalized spline models for the analysis of spatio-temporal count data
    Bauer, Cici
    Wakefield, Jon
    Rue, Havard
    Self, Steve
    Feng, Zijian
    Wang, Yu
    STATISTICS IN MEDICINE, 2016, 35 (11) : 1848 - 1865
  • [6] On fitting spatio-temporal disease mapping models using approximate Bayesian inference
    Dolores Ugarte, Maria
    Adin, Aritz
    Goicoa, Tomas
    Fernandez Militino, Ana
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2014, 23 (06) : 507 - 530
  • [7] Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
    van Gerven, Marcel A. J.
    Cseke, Botond
    de lange, Floris P.
    Heskes, Tom
    NEUROIMAGE, 2010, 50 (01) : 150 - 161
  • [8] A Bayesian spatio-temporal approach for real-time detection of disease outbreaks: a case study
    Zou, Jian
    Karr, Alan F.
    Datta, Gauri
    Lynch, James
    Grannis, Shaun
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2014, 14
  • [9] Bayesian spatio-temporal analysis of the COVID-19 pandemic in Catalonia
    Satorra, Pau
    Tebe, Cristian
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [10] Applying Bayesian spatio-temporal models to demand analysis of shared bicycle
    Duan, Yimeng
    Zhang, Shen
    Yu, Zhuoran
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 583