Safeguarding FinTech innovations with machine learning: Comparative assessment of various approaches

被引:14
|
作者
Mirza, Nawazish [1 ]
Elhoseny, Mohamed [2 ,3 ]
Umar, Muhammad [4 ]
Metawa, Noura [5 ,6 ]
机构
[1] Excelia Business Sch, La Rochelle, France
[2] Univ Sharjah, Coll Comp & Informat, Sharjah, U Arab Emirates
[3] Mansoura Univ, Fac Comp & Informat Syst, Mansoura, Egypt
[4] Lebanese Amer Univ, Adnan Kassar Sch Business, Beirut, Lebanon
[5] Univ Sharjah, Coll Business Adm, Sharjah, U Arab Emirates
[6] Mansoura Univ, Fac Commerce, Mansoura, Egypt
关键词
FinTech threat attribution; Machine learning; Sustainability; Deep learning; BANKING SECTOR; INTERMEDIATION;
D O I
10.1016/j.ribaf.2023.102009
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Protecting data is paramount to the development of FinTech. Fraudulent activities can exploit weaknesses in FinTech systems, wreaking havoc on both customers and service providers. However, machine-learning approaches have the potential to spot irregularities in FinTech sys-tems, looking for red flags in economic data sets and using such red flags to inform predictive models for the detection of future fraud. We assess anomaly detection techniques, thereby adding to this crucial topic. We apply a variety of techniques to multiple synthetic and real-world da-tabases. Findings corroborate that machine-learning approaches help with fraud detection, although with varying degrees of effectiveness. Our findings demonstrate that competitive advantage is the most crucial component amongst some Fintech-based predictors, while sales volume is diagnosed as having the least effective importance. To ensure the consistency and accuracy of our findings, we choose case studies for evaluating ML-based fraudulent activities based on the availability of properly allowed appropriate.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Machine Learning Approaches for Protein-Protein Interaction Hot Spot Prediction: Progress and Comparative Assessment
    Liu, Siyu
    Liu, Chuyao
    Deng, Lei
    MOLECULES, 2018, 23 (10):
  • [42] Comparing Machine Learning Approaches for Fall Risk Assessment
    Silva, Joana
    Madureira, Joao
    Tonelo, Claudia
    Baltazar, Daniela
    Silva, Catarina
    Martins, Anabela
    Alcobia, Carlos
    Sousa, Ines
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 4: BIOSIGNALS, 2017, : 223 - 230
  • [43] Machine learning approaches for seismic vulnerability assessment of urban buildings: A comparative study with analytic hierarchy process
    Asadollahzadeh, Danesh
    Behnam, Behrouz
    PROGRESS IN DISASTER SCIENCE, 2025, 25
  • [44] Machine learning and deep learning approaches in IoT
    Javed A.
    Awais M.
    Shoaib M.
    Khurshid K.S.
    Othman M.
    PeerJ Computer Science, 2023, 9
  • [45] Machine learning and deep learning approaches in IoT
    Javed, Abqa
    Awais, Muhammad
    Shoaib, Muhammad
    Khurshid, Khaldoon S.
    Othman, Mahmoud
    PEERJ COMPUTER SCIENCE, 2023, 9 : 1 - 30
  • [46] Comparative Analysis of Machine Learning Approaches for the Early Diagnosis of Keratoconus
    Subramanian, P.
    Ramesh, G. P.
    Parameshachari, B. D.
    DISTRIBUTED COMPUTING AND OPTIMIZATION TECHNIQUES, ICDCOT 2021, 2022, 903 : 241 - 250
  • [47] Supervised Hybrid Model for Rumor Classification: A Comparative Study of Machine and Deep Learning Approaches
    Aothoi, Mehzabin Sadat
    Ahsan, Samin
    Choudhury, Najeefa Nikhat
    Rasel, Annajiat Alim
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2023, 2023, 14148 : 281 - 286
  • [48] Comparative study on deep and machine learning approaches for predicting wind pressures on tall buildings
    Kaloop, Mosbeh R.
    Bardhan, Abidhan
    Samui, Pijush
    Hu, Jong Wan
    Elsharawy, Mohamed
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 111 : 610 - 627
  • [49] Credit Card Fraud Detection Using Various Machine Learning and Deep Learning Approaches
    Gorte, Ashvini S.
    Mohod, S. W.
    Keole, R. R.
    Mahore, T. R.
    Pande, Sagar
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 621 - 628
  • [50] A Machine Learning Framework for Adaptive FinTech Security Provisioning
    La, Hyun Jung
    Kim, Soo Dong
    JOURNAL OF INTERNET TECHNOLOGY, 2018, 19 (05): : 1545 - 1553