Molecular dynamics simulation of Fe-Si alloys using a neural network machine learning potential

被引:7
作者
Sun, Huaijun [1 ,2 ]
Zhang, Chao [3 ]
Tang, Ling [4 ]
Wang, Renhai [5 ]
Xia, Weiyi [2 ,6 ]
Wang, Cai-Zhuang [2 ,6 ]
机构
[1] Zhejiang Agr & Forestry Univ, Jiyang Coll, Zhuji 311800, Peoples R China
[2] Ames Lab, US Dept Energy, Ames, IA 50011 USA
[3] Yantai Univ, Dept Phys, Yantai 264005, Peoples R China
[4] Zhejiang Univ Technol, Coll Sci, Dept Appl Phys, Hangzhou 310023, Peoples R China
[5] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
[6] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
基金
中国国家自然科学基金;
关键词
AMORPHOUS-IRON DISILICIDE; AB-INITIO; EPSILON-FESI; ENERGY; AL; TRANSITION; FILMS;
D O I
10.1103/PhysRevB.107.224301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interatomic potential development using machine learning (ML) approaches has attracted a lot of attention in recent years because these potentials can effectively describe the structural and dynamical properties of complex materials at the atomistic level. In this work, we present the development of a neural network (NN) deep ML interatomic potential for Fe-Si alloys, and we demonstrate the effectiveness of the NN-ML potential in predicting the structures and energies of liquid and crystalline phases of Fe-Si alloys in comparison with the results from ab initio molecular dynamics simulations or experimental data. The developed NN-ML potential is also used to perform molecular dynamics simulations to study the structures of Fe-Si alloys with various compositions under rapid solidification conditions. The short-ranged orders in the rapidly solidified Fe-Si alloys are also analyzed by a cluster alignment method.
引用
收藏
页数:13
相关论文
共 65 条
  • [1] [Anonymous], ASM ALLOY PHASE DIAG
  • [2] [Anonymous], 2013, Iron-Binary phase diagrams
  • [3] Antwis L, 2010, AIP CONF PROC, V1321, P278
  • [4] Viscosity of Fe-Si melts with silicon content up to 45 at %
    Bel'tyukov, A. L.
    Lad'yanov, V. I.
    Shishmarin, A. I.
    [J]. HIGH TEMPERATURE, 2014, 52 (02) : 185 - 191
  • [5] Atomic-level structure and structure-property relationship in metallic glasses
    Cheng, Y. Q.
    Ma, E.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2011, 56 (04) : 379 - 473
  • [6] Ordered Phases in Fe-Si Alloys: A First-Principles Study
    Choi, Young Won
    Koo, Yang Mo
    Kwon, Se Kyun
    Vitos, Levente
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 72 (06) : 737 - 740
  • [7] EMBEDDED-ATOM METHOD - DERIVATION AND APPLICATION TO IMPURITIES, SURFACES, AND OTHER DEFECTS IN METALS
    DAW, MS
    BASKES, MI
    [J]. PHYSICAL REVIEW B, 1984, 29 (12): : 6443 - 6453
  • [8] LOCAL ATOMIC ENVIRONMENT PARAMETERS AND MAGNETIC-PROPERTIES OF DISORDERED CRYSTALLINE AND AMORPHOUS IRON SILICON ALLOYS
    ELSUKOV, EP
    KONYGIN, GN
    BARINOV, VA
    VORONINA, EV
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (37) : 7597 - 7606
  • [9] Structural stability of Fe5Si3 and Ni2Si studied by high-pressure x-ray diffraction and ab initio total-energy calculations
    Errandonea, D.
    Santamaria-Perez, D.
    Vegas, A.
    Nuss, J.
    Jansen, M.
    Rodriguez-Hernandez, P.
    Munoz, A.
    [J]. PHYSICAL REVIEW B, 2008, 77 (09)
  • [10] Atomistic cluster alignment method for local order mining in liquids and glasses
    Fang, X. W.
    Wang, C. Z.
    Yao, Y. X.
    Ding, Z. J.
    Ho, K. M.
    [J]. PHYSICAL REVIEW B, 2010, 82 (18)