Euler-MacLaurin Summation Formula on Polytopes and Expansions in Multivariate Bernoulli Polynomials

被引:0
|
作者
Brandolini, L. [1 ]
Colzani, L. [2 ]
Gariboldi, B. [1 ]
Gigante, G. [1 ]
Monguzzi, A. [1 ]
机构
[1] Univ Bergamo, Dipartimento Ingn Gest Informaz & Prod, Viale G Marconi 5, I-24044 Dalmine, BG, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via R Cozzi 55, I-20125 Milan, Italy
关键词
Euler-MacLaurin summation formula; Bernoulli polynomials; Fourier transform; RIEMANN SUMS; POINTS;
D O I
10.1007/s00041-023-10011-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a multidimensional weighted Euler-MacLaurin summation formula on polytopes and a multidimensional generalization of a result due to L. J. Mordell on the series expansion in Bernoulli polynomials. These results are consequences of a more general series expansion; namely, if ?t(P) denotes the characteristic function of a dilated integer convex polytope P and q is a function with suitable regularity, we prove that the periodization of q?P-t admits an expansion in terms of multivariate Bernoulli polynomials. These multivariate polynomials are related to the Lerch Zeta function. In order to prove our results we need to carefully study the asymptotic expansion of q?tP, the Fourier transform of q?tP.
引用
收藏
页数:49
相关论文
共 17 条
  • [1] Euler–MacLaurin Summation Formula on Polytopes and Expansions in Multivariate Bernoulli Polynomials
    L. Brandolini
    L. Colzani
    B. Gariboldi
    G. Gigante
    A. Monguzzi
    Journal of Fourier Analysis and Applications, 2023, 29
  • [2] Resurgence of the Euler-MacLaurin summation formula
    Costin, Ovidiu
    Garoufalidis, Stavros
    ANNALES DE L INSTITUT FOURIER, 2008, 58 (03) : 893 - 914
  • [3] A Hilbert inequality and an Euler-Maclaurin summation formula
    Krnic, Mario
    Pecaric, Josip
    ANZIAM JOURNAL, 2007, 48 : 419 - 431
  • [4] SUM-INTEGRAL INTERPOLATORS AND THE EULER-MACLAURIN FORMULA FOR POLYTOPES
    Garoufalidis, Stavros
    Pommersheim, James
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (06) : 2933 - 2958
  • [5] Integrals involving a function associated with the Euler-Maclaurin summation formula
    Choi, J
    Srivastava, HM
    Zhang, NY
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 93 (2-3) : 101 - 116
  • [6] New integrals involving a function associated with Euler-Maclaurin summation formula
    Frontczak, Robert
    Kumari, Munesh
    Prasad, Kalika
    CONTRIBUTIONS TO MATHEMATICS, 2023, 7 : 11 - 14
  • [7] AN EULER-MACLAURIN FORMULA FOR POLYGONAL SUMS
    Brandolini, Luca
    Colzani, Leonardo
    Robins, Sinai
    Travaglini, Giancarlo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (01) : 151 - 172
  • [8] Reactivity calculation using the Euler-Maclaurin formula
    Suescun-Diaz, Daniel
    Rodriguez-Sarasty, Jesus A.
    Figueroa-Jimenez, Jorge H.
    ANNALS OF NUCLEAR ENERGY, 2013, 53 : 104 - 108
  • [9] A generalization of the Euler-Maclaurin summation formula: an application to numerical computation of the Fermi-Dirac integrals
    Rzadkowski, Grzegorz
    Lepkowski, Slawomir
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 488 - +
  • [10] A generalization of the euler-maclaurin summation formula: An application to numerical computation of the fermi-dirac integrals
    Rzadkowski, Grzegorz
    Lepkowski, Slawomir
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 35 (01) : 63 - 74