Fundamental Understanding of Ultrathin, Highly Stable Self-Assembled Liquid Crystalline Graphene Oxide Membranes Leading to Precise Molecular Sieving through Non-equilibrium Molecular Dynamics

被引:7
|
作者
Pathan, Shabnam [1 ]
Islam, Sk Safikul [1 ]
Sen Gupta, Ria [1 ]
Maity, Barnali
Reddy, P. Rajasekhar [2 ]
Mandal, Samir [1 ]
Reddy, K. Anki [3 ]
Bose, Suryasarathi [1 ]
机构
[1] Indian Inst Sci, Dept Mat Engn, Bengaluru 560012, India
[2] Indian Inst Technol, Dept Chem Engn, Gauhati 781039, Assam, India
[3] Indian Inst Technol Tirupati, Dept Chem Engn, Tirupati 517619, Andhra Pradesh, India
关键词
Graphene oxide membrane; lyotropic liquid crystal; self-assembly; interlayer nanostructure; UV cross-link membrane; molecular separation; WATER; PERFORMANCE; SEPARATION; TRANSPORT; PERMEATION; OSMOSIS; FACILE;
D O I
10.1021/acsnano.2c10300
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-assembled graphene oxide lyotropic liquid crystal (GO LLC) structures are mostly formed in aqueous medium; however, most GO derivatives are water insoluble, so processing GO LLCs in water poses a practical limitation. The use of polar aprotic solvent (like dimethyl sulfoxide) for the formation of GO LLC structures would be interesting, because it would allow incorporating additives, like photoinitiators or cross-linkers, or blending with polymers that are insoluble in water, which hence would expand its scope. The well-balanced electrostatic inter-action between DMSO and GO can promote and stabilize the GO nanosheets' alignment even at lower concentrations. With this in mind, herein we report mechanically robust, chlorine-tolerant, self-assembled nanostructured GO membranes for precise molecular sieving. Small-angle X-ray scattering and polarized optical microscopy confirmed the alignment of the modified GO nanosheets in polar aprotic solvent, and the LLC structure was effectively preserved even after cross-linking under UV light. We found that the modified GO membranes exhibited considerably improved salt rejection for monovalent ions (99%) and water flux (120 LMH) as compared to the shear-aligned GO membrane, which is well supported by forward osmosis simulation studies. Additionally, our simulation studies indicated that water molecules traveled a longer path while permeating through the GO membrane compared to the GO LLC membrane. Consequently, salt ions permeate slowly across the GO LLC membrane, yielding higher salt rejection than the GO membrane. This begins to suggest strong electrostatic repulsion with the salt ions, causing higher salt rejection in the GO LLC membrane. We foresee that the ordered cross-linked GO sheets contributed to excellent mechanical stability under a high-pressure, cross-flow, chlorine environment. Overall, these membranes are easily scalable, exhibit good mechanical stability, and represent a breakthrough for the potential use of polymerized GO LLC membranes in practical water remediation applications.
引用
收藏
页码:7272 / 7284
页数:13
相关论文
共 3 条
  • [1] Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation
    Sun, Chengzhen
    Bai, Bofeng
    SCIENCE BULLETIN, 2017, 62 (08) : 554 - 562
  • [2] Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation
    Chengzhen Sun
    Bofeng Bai
    Science Bulletin, 2017, 62 (08) : 554 - 562
  • [3] Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer
    Zhang, Yue
    Barnes, George L.
    Yan, Tianying
    Hase, William L.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (17) : 4435 - 4445