High-order numerical algorithm for fractional-order nonlinear diffusion equations with a time delay effect

被引:0
作者
Omran, A. K. [1 ,2 ]
Pinenov, V. G. [1 ,3 ]
机构
[1] Ural Fed Univ, Inst Nat Sci & Math, Dept Computat Math & Comp Sci, 19 Mira St, Ekaterinburg 620002, Russia
[2] Al Azhar Univ, Fac Sci, Dept Math, Assiut 71524, Egypt
[3] Russian Acad Sci, Inst Math & Mech, Ural Branch, 16 Kovalevskoy St, Ekaterinburg 620000, Russia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 04期
关键词
fractional diffusion equations; Alikhanov L2; symbolscript formula; Legendre-Galerkin spectral method; discrete fractional Gro?nwall inequalities; time delay; BOUNDARY-VALUE-PROBLEMS; DISCRETE GRONWALL INEQUALITY; SPECTRAL-GALERKIN METHOD; FINITE-DIFFERENCE; VARIABLE-ORDER; SCHEME; 2ND-ORDER; SYSTEMS; FORMULA; SOLVERS;
D O I
10.3934/math.2023385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we examine and provide numerical solutions to the nonlinear fractional order time-space diffusion equations with the influence of temporal delay. An effective high-order numerical scheme that mixes the so-called Alikhanov L2 - symbolscript formula side by side to the power of the Galerkin method is presented. Specifically, the time-fractional component is estimated using the uniform symbolscript difference formula, while the spatial fractional operator is approximated using the Legendre-Galerkin spectral approximation. In addition, Taylor's approximations are used to discretize the term of the nonlinear source function. It has been shown theoretically that the suggested scheme's numerical solution is unconditionally stable, with a second-order time-convergence and a space-convergent order of exponential rate. Furthermore, a suitable discrete fractional Gro center dot nwall inequality is then utilized to quantify error estimates for the derived solution. Finally, we provide a numerical test that closely matches the theoretical investigation to assess the efficacy of the suggested method.
引用
收藏
页码:7672 / 7694
页数:23
相关论文
共 57 条
[31]   ERROR ANALYSIS OF A HIGH ORDER METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS [J].
Lv, Chunwan ;
Xu, Chuanju .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) :A2699-A2724
[32]  
Marcellan F, 2006, LECT NOTES MATH, V1883, P1, DOI 10.1007/b128597
[33]   Finite difference and spectral collocation methods for the solution of semilinear time fractional convection-reaction-diffusion equations with time delay [J].
Mohebbi, Akbar .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 61 (1-2) :635-656
[34]   Numerical treatment of non-linear fourth-order distributed fractional sub-diffusion equation with time-delay [J].
Nandal, Sarita ;
Pandey, Dwijendra Narain .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 83
[35]   An easy to implement linearized numerical scheme for fractional reaction-diffusion equations with a prehistorical nonlinear source function [J].
Omran, A. K. ;
Zaky, M. A. ;
Hendy, A. S. ;
Pimenov, V. G. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 200 :218-239
[36]   An Efficient Hybrid Numerical Scheme for Nonlinear Multiterm Caputo Time and Riesz Space Fractional-Order Diffusion Equations with Delay [J].
Omran, A. K. ;
Zaky, M. A. ;
Hendy, A. S. ;
Pimenov, V. G. .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[37]   Numerical algorithm for a generalized form of Schnakenberg reaction-diffusion model with gene expression time delay [J].
Omrana, A. K. ;
Zaky, M. A. ;
Hendy, A. S. ;
Pimenova, V. G. .
APPLIED NUMERICAL MATHEMATICS, 2023, 185 :295-310
[38]   On a class of non-linear delay distributed order fractional diffusion equations [J].
Pimenov, V. G. ;
Hendy, A. S. ;
De Staelen, R. H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 318 :433-443
[39]   A NUMERICAL SOLUTION FOR A CLASS OF TIME FRACTIONAL DIFFUSION EQUATIONSWITH DELAY [J].
Pimenov, Vladimir G. ;
Hendy, Ahmed S. .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2017, 27 (03) :477-488
[40]  
Podlubny I, 1999, MATH SCI ENG