Phase transition engineering for effective defect passivation to achieve highly efficient and stable perovskite solar cells

被引:47
作者
Kim, Dohyun [1 ]
Choi, Hyuntae [1 ]
Jung, Wooteak [1 ]
Kim, Chanhyeok [1 ]
Park, Eun Young [2 ]
Kim, Sungryong [1 ]
Jeon, Nam Joong [2 ]
Song, Seulki [3 ]
Park, Taiho [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, 77 Cheongam Ro, Gyeongbuk, Pohang, South Korea
[2] Korea Res Inst Chem Technol KRICT, Div Adv Mat, Daejeon 34114, South Korea
[3] Chungnam Natl Univ, Dept Chem Engn & Appl Chem, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
HALIDE PEROVSKITES; LEAD IODIDE; GRAIN-BOUNDARIES; PERFORMANCE; FORMAMIDINIUM; ACCUMULATION; TEMPERATURE; EVOLUTION;
D O I
10.1039/d3ee00636k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To obtain highly efficient and stable perovskite solar cells (PSCs), defects must be removed at the grain boundaries of the perovskite films. Most surface-treatment methods involve dissolving the passivating material in a solvent and applying it to the surface. However, as the surface-treatment temperature increases, the solvent evaporates, resulting in the reaction occurring in the solid state. In this work, we report an effective interfacial-engineering method for PSCs involving the in situ thermal phase transition of alkylammonium formates (AAFos). AAFos, which consist of a large organic cation with a pseudo-halide anion, can participate in the passivation as the liquid phase at relatively low temperatures because of the weak coordination between the cations and anions. This property accounts for their several benefits in interfacial engineering: (1) by enhancing the liquid-like behavior of AAFo, it can effectively passivate into the grain boundaries of perovskites to reduce the trap densities. (2) The formate anion has a relatively higher affinity with iodide vacancies than other halides, resulting in effective passivation at iodide vacancies for improved thermal stability. (3) The long alkyl chain of decylammonium cations improves moisture stability by preventing moisture permeation into the perovskite layer. Thanks to these advantages, we achieved a power-conversion efficiency (PCE) of 25.0% with superior thermal stability (under N-2 at 85 degrees C) and moisture stability (60 +/- 10% of relative humidity), which retained over 92% and 81% of their initial efficiency for 1000 hours using dodecylammonium formate. Finally, we achieved a high efficiency of 20.82% and a remarkable fill factor (80.77%) in PSC modules with an active area of 23.75 cm(2), proving the suitability of the strategy for manufacturing large-area devices. This work demonstrates that defect passivation via thermal-phase transition is an efficient strategy for improving the PCE and stability of PSCs.
引用
收藏
页码:2045 / 2055
页数:11
相关论文
共 50 条
  • [31] Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells
    Afraj, Shakil N.
    Velusamy, Arulmozhi
    Chen, Chung-Yu
    Ni, Jen-Shyang
    Ezhumalai, Yamuna
    Pan, Chun-Huang
    Chen, Kuan-Yu
    Yau, Shueh-Lin
    Liu, Cheng-Liang
    Chiang, Chien-Hung
    Wu, Chun-Guey
    Chen, Ming-Chou
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (20) : 11254 - 11267
  • [32] Multiple Passivation of Electronic Defects for Efficient and Stable Perovskite Solar Cells
    Li, Mingguang
    Yu, Longsheng
    Zhang, Ying
    Gao, Huan
    Li, Ping
    Chen, Runfeng
    Huang, Wei
    [J]. SOLAR RRL, 2020, 4 (11):
  • [33] Review of Novel Passivation Techniques for Efficient and Stable Perovskite Solar Cells
    Kim, Jincheol
    Ho-Baillie, Anita
    Huang, Shujuan
    [J]. SOLAR RRL, 2019, 3 (04):
  • [34] A Lewis Base-Assisted Passivation Strategy Towards Highly Efficient and Stable Perovskite Solar Cells
    Yang, Guang
    Qin, Pingli
    Fang, Guojia
    Li, Gang
    [J]. SOLAR RRL, 2018, 2 (08):
  • [35] Defects passivation via D-glucosamine hydrochloride for highly efficient and stable perovskite solar cells
    Li, Mingya
    Ye, Zecong
    Chen, Xiaotong
    Xing, Longjiang
    Yan, Cong
    Wang, Shouming
    Xiao, Liangang
    Ji, Shaomin
    Jin, Yaocheng
    Ma, Feiyue
    Yang, Qing-Dan
    Yang, Chen
    Huo, Yanping
    [J]. ORGANIC ELECTRONICS, 2022, 107
  • [36] Defect and Contact Passivation for Perovskite Solar Cells
    Aydin, Erkan
    De Bastiani, Michele
    De Wolf, Stefaan
    [J]. ADVANCED MATERIALS, 2019, 31 (25)
  • [37] Defects and Defect Passivation in Perovskite Solar Cells
    Wang, Zhanwei
    Gao, Hongli
    Wu, Dandan
    Meng, Junhua
    Deng, Jinxiang
    Cui, Min
    [J]. MOLECULES, 2024, 29 (09):
  • [38] A full range of defect passivation strategy targeting efficient and stable planar perovskite solar cells
    Sun, Yansen
    Yang, Shuo
    Pang, Zhenyu
    Jiang, Haipeng
    Chi, Shaohua
    Sun, Xiaoxu
    Fan, Lin
    Wang, Fengyou
    Liu, Xiaoyan
    Wei, Maobin
    Yang, Lili
    Yang, Jinghai
    [J]. CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [39] Synchronous defect passivation strategy via Lewis base for efficient and stable perovskite solar cells
    Liu, Hongtao
    Miao, Xinyue
    Wang, Kelin
    Gao, Jieyu
    Geng, Hailong
    Deng, Xiong
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (34) : 26040 - 26049
  • [40] Crystallization manipulation and holistic defect passivation toward stable and efficient inverted perovskite solar cells
    Zhang, Cong
    Li, Haiyun
    Gong, Cheng
    Zhuang, Qixin
    Chen, Jiangzhao
    Zang, Zhigang
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (09) : 3825 - 3836