Phase transition engineering for effective defect passivation to achieve highly efficient and stable perovskite solar cells

被引:47
|
作者
Kim, Dohyun [1 ]
Choi, Hyuntae [1 ]
Jung, Wooteak [1 ]
Kim, Chanhyeok [1 ]
Park, Eun Young [2 ]
Kim, Sungryong [1 ]
Jeon, Nam Joong [2 ]
Song, Seulki [3 ]
Park, Taiho [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, 77 Cheongam Ro, Gyeongbuk, Pohang, South Korea
[2] Korea Res Inst Chem Technol KRICT, Div Adv Mat, Daejeon 34114, South Korea
[3] Chungnam Natl Univ, Dept Chem Engn & Appl Chem, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
HALIDE PEROVSKITES; LEAD IODIDE; GRAIN-BOUNDARIES; PERFORMANCE; FORMAMIDINIUM; ACCUMULATION; TEMPERATURE; EVOLUTION;
D O I
10.1039/d3ee00636k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To obtain highly efficient and stable perovskite solar cells (PSCs), defects must be removed at the grain boundaries of the perovskite films. Most surface-treatment methods involve dissolving the passivating material in a solvent and applying it to the surface. However, as the surface-treatment temperature increases, the solvent evaporates, resulting in the reaction occurring in the solid state. In this work, we report an effective interfacial-engineering method for PSCs involving the in situ thermal phase transition of alkylammonium formates (AAFos). AAFos, which consist of a large organic cation with a pseudo-halide anion, can participate in the passivation as the liquid phase at relatively low temperatures because of the weak coordination between the cations and anions. This property accounts for their several benefits in interfacial engineering: (1) by enhancing the liquid-like behavior of AAFo, it can effectively passivate into the grain boundaries of perovskites to reduce the trap densities. (2) The formate anion has a relatively higher affinity with iodide vacancies than other halides, resulting in effective passivation at iodide vacancies for improved thermal stability. (3) The long alkyl chain of decylammonium cations improves moisture stability by preventing moisture permeation into the perovskite layer. Thanks to these advantages, we achieved a power-conversion efficiency (PCE) of 25.0% with superior thermal stability (under N-2 at 85 degrees C) and moisture stability (60 +/- 10% of relative humidity), which retained over 92% and 81% of their initial efficiency for 1000 hours using dodecylammonium formate. Finally, we achieved a high efficiency of 20.82% and a remarkable fill factor (80.77%) in PSC modules with an active area of 23.75 cm(2), proving the suitability of the strategy for manufacturing large-area devices. This work demonstrates that defect passivation via thermal-phase transition is an efficient strategy for improving the PCE and stability of PSCs.
引用
收藏
页码:2045 / 2055
页数:11
相关论文
共 50 条
  • [21] Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells
    Gao, Feng
    Zhao, Yang
    Zhang, Xingwang
    You, Jingbi
    ADVANCED ENERGY MATERIALS, 2020, 10 (13)
  • [22] Passivation of Grain Boundary by Squaraine Zwitterions for Defect Passivation and Efficient Perovskite Solar Cells
    Wang, Zhen
    Pradhan, Anusha
    kamarudin, Muhammad Akmal
    Pandey, Manish
    Pandey, Shyam S.
    Zhang, Putao
    Ng, Chi Huey
    Tripathi, Atul S. M.
    Ma, Tingli
    Hayase, Shuzi
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (10) : 10012 - 10020
  • [23] Precursor engineering for efficient and stable perovskite solar cells
    Luan, Fuyuan
    Li, Haiyan
    Gong, Shuiping
    Chen, Xinyu
    Shou, Chunhui
    Wu, Zihua
    Xie, Huaqing
    Yang, Songwang
    NANOTECHNOLOGY, 2023, 34 (05)
  • [24] Defect Passivation with Multifunctional Fluoro-Group-Containing Organic Additives for Highly Efficient and Stable Perovskite Solar Cells
    Gupta, Ritesh Kant
    Garai, Rabindranath
    Sharma, Bhavna
    Afroz, Mohammad Adil
    Yukta
    Choudhary, Shivani
    Iyer, Parameswar Krishnan
    Satapathi, Soumitra
    ENERGY & FUELS, 2022, 37 (01) : 667 - 674
  • [25] Progress of defect and defect passivation in perovskite solar cells
    Wang Cheng-Lin
    Zhang Zuo-Lin
    Zhu Yun-Fei
    Zhao Xue-Fan
    Song Hong-Wei
    Chen Cong
    ACTA PHYSICA SINICA, 2022, 71 (16)
  • [26] Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells
    Afraj, Shakil N.
    Velusamy, Arulmozhi
    Chen, Chung-Yu
    Ni, Jen-Shyang
    Ezhumalai, Yamuna
    Pan, Chun-Huang
    Chen, Kuan-Yu
    Yau, Shueh-Lin
    Liu, Cheng-Liang
    Chiang, Chien-Hung
    Wu, Chun-Guey
    Chen, Ming-Chou
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (20) : 11254 - 11267
  • [27] Dual-Site Synergistic Passivation for Highly Efficient and Stable Perovskite Solar Cells
    Zhang, Wenyuan
    He, Lang
    Meng, Yan
    Kanda, Hiroyuki
    Tang, Dongyan
    Ding, Bin
    Ding, Yong
    Nazeeruddin, Mohammad Khaja
    Li, Xin
    ADVANCED ENERGY MATERIALS, 2022, 12 (46)
  • [28] Synergistic Effect of Anti-Solvent and Component Engineering for Effective Passivation to Attain Highly Stable Perovskite Solar Cells
    Cheng, Yetai
    Wei, Qingbo
    Ye, Zhangwen
    Zhang, Xinyu
    Ji, Peixin
    Wang, Nannan
    Zan, Lingxing
    Fu, Feng
    Liu, Shengzhong
    SOLAR RRL, 2022, 6 (09)
  • [29] Multiple Passivation of Electronic Defects for Efficient and Stable Perovskite Solar Cells
    Li, Mingguang
    Yu, Longsheng
    Zhang, Ying
    Gao, Huan
    Li, Ping
    Chen, Runfeng
    Huang, Wei
    SOLAR RRL, 2020, 4 (11):
  • [30] Bifunctional Passivation through Fluoride Treatment for Highly Efficient and Stable Perovskite Solar Cells
    Liu, Chang
    Zhang, Jiyao
    Zhang, Luozheng
    Zhou, Xianyong
    Liu, Yanliang
    Wang, Xingzhu
    Xu, Baomin
    ADVANCED ENERGY MATERIALS, 2022, 12 (30)