An integral transform via the bounded linear operators on abstract Wiener space

被引:3
作者
Chung, Hyun Soo [1 ]
机构
[1] Dankook Univ, Dept Math, Cheonan 31116, South Korea
关键词
Bounded linear operator; Integral transform; Convolution product; First variation; Cameron-Storvick type theorem; CONVOLUTION;
D O I
10.2298/FIL2317541C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain some results of a more rigorous mathematical structure that can guarantee the orthogonality of an orthogonal set even when results and formula on abstract Wiener integrals or some transforms using bounded linear operators. We then establish the existence of an integral transform on abstract Wiener space. Finally, we obtain some fundamental formulas with respect to the integral transform involving the Cameron-Storvick type theorem.
引用
收藏
页码:5541 / 5552
页数:12
相关论文
共 21 条
[1]   ANALYTIC CONTINUATION FOR FUNCTIONS OF SEVERAL COMPLEX VARIABLES [J].
CAMERON, RH ;
STORVICK, DA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 125 (01) :7-&
[2]  
CAMERON RH, 1945, DUKE MATH J, V12, P489, DOI 10.1215/S0012-7094-45-01244-0
[3]   FOURIER-WIENER TRANSFORMS OF FUNCTIONALS BELONGING TO L-2 OVER THE SPACE-C [J].
CAMERON, RH ;
MARTIN, WT .
DUKE MATHEMATICAL JOURNAL, 1947, 14 (01) :99-107
[4]  
Chang KS, 2000, NUMER FUNC ANAL OPT, V21, P97
[5]   Convolution products, integral transforms and inverse integral transforms of functionals in L2(C0[0, T]) [J].
Chang, Seung Jun ;
Chung, Hyun Soo ;
Skoug, David .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (02) :143-151
[6]   Double integral transforms and double convolution products of functionals on abstract Wiener space [J].
Chung, H. S. ;
Skoug, D. ;
Chang, S. J. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (11) :922-933
[8]   A Matrix Transform on Function Space with Related Topics [J].
Chung, Hyun Soo .
FILOMAT, 2021, 35 (13) :4459-4468
[9]   Generalized Integral Transforms via the Series Expressions [J].
Chung, Hyun Soo .
MATHEMATICS, 2020, 8 (04)
[10]   A FUBINI THEOREM FOR INTEGRAL TRANSFORMS AND CONVOLUTION PRODUCTS [J].
Chung, Hyun Soo ;
Skoug, David ;
Chang, Seung Jun .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (03)