Ultrasound-Based Machine Learning Approach for Detection of Nonalcoholic Fatty Liver Disease

被引:12
作者
Tahmasebi, Aylin [1 ]
Wang, Shuo [1 ]
Wessner, Corinne E. [1 ]
Vu, Trang [1 ]
Liu, Ji-Bin [1 ]
Forsberg, Flemming [1 ]
Civan, Jesse [2 ]
Guglielmo, Flavius F. [1 ]
Eisenbrey, John R. [1 ,3 ]
机构
[1] Thomas Jefferson Univ, Dept Radiol, Philadelphia, PA USA
[2] Thomas Jefferson Univ, Dept Med, Div Gastroenterol & Hepatol, Philadelphia, PA USA
[3] Thomas Jefferson Univ, Dept Radiol, 132 S 10th St,Main Bldg, Philadelphia, PA 19107 USA
关键词
artificial intelligence; AutoML; liver steatosis; nonalcoholic fatty liver disease; ultrasound; ARTIFICIAL-INTELLIGENCE; DIAGNOSIS; STEATOSIS; CLASSIFICATION;
D O I
10.1002/jum.16194
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
ObjectivesCurrent diagnosis of nonalcoholic fatty liver disease (NAFLD) relies on biopsy or MR-based fat quantification. This prospective study explored the use of ultrasound with artificial intelligence for the detection of NAFLD. MethodsOne hundred and twenty subjects with clinical suspicion of NAFLD and 10 healthy volunteers consented to participate in this institutional review board-approved study. Subjects were categorized as NAFLD and non-NAFLD according to MR proton density fat fraction (PDFF) findings. Ultrasound images from 10 different locations in the right and left hepatic lobes were collected following a standard protocol. MRI-based liver fat quantification was used as the reference standard with >6.4% indicative of NAFLD. A supervised machine learning model was developed for assessment of NAFLD. To validate model performance, a balanced testing dataset of 24 subjects was used. Sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy with 95% confidence interval were calculated. ResultsA total of 1119 images from 106 participants was used for model development. The internal evaluation achieved an average precision of 0.941, recall of 88.2%, and precision of 89.0%. In the testing set AutoML achieved a sensitivity of 72.2% (63.1%-80.1%), specificity of 94.6% (88.7%-98.0%), positive predictive value (PPV) of 93.1% (86.0%-96.7%), negative predictive value of 77.3% (71.6%-82.1%), and accuracy of 83.4% (77.9%-88.0%). The average agreement for an individual subject was 92%. ConclusionsAn ultrasound-based machine learning model for identification of NAFLD showed high specificity and PPV in this prospective trial. This approach may in the future be used as an inexpensive and noninvasive screening tool for identifying NAFLD in high-risk patients.
引用
收藏
页码:1747 / 1756
页数:10
相关论文
共 57 条
[1]   Decision support system for fatty liver,disease using GIST descriptors extracted from ultrasound images [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Bhat, Shreya ;
Raghavendra, U. ;
Gudigar, Anjan ;
Molinari, Filippo ;
Vijayananthan, Anushya ;
Ng, Kwan Hoong .
INFORMATION FUSION, 2016, 29 :32-39
[2]   Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts [J].
Atabaki-Pasdar, Naeimeh ;
Ohlsson, Mattias ;
Vinuela, Ana ;
Frau, Francesca ;
Pomares-Millan, Hugo ;
Haid, Mark ;
Jones, Angus G. ;
Thomas, E. Louise ;
Koivula, Robert W. ;
Kurbasic, Azra ;
Mutie, Pascal M. ;
Fitipaldi, Hugo ;
Fernandez, Juan ;
Dawed, Adem Y. ;
Giordano, Giuseppe N. ;
Forgie, Ian M. ;
McDonald, Timothy J. ;
Rutters, Femke ;
Cederberg, Henna ;
Chabanova, Elizaveta ;
Dale, Matilda ;
Masi, Federico De ;
Thomas, Cecilia Engel ;
Allin, Kristine H. ;
Hansen, Tue H. ;
Heggie, Alison ;
Hong, Mun-Gwan ;
Elders, Petra J. M. ;
Kennedy, Gwen ;
Kokkola, Tarja ;
Pedersen, Helle Krogh ;
Mahajan, Anubha ;
McEvoy, Donna ;
Pattou, Francois ;
Raverdy, Violeta ;
Haussler, Ragna S. ;
Sharma, Sapna ;
Thomsen, Henrik S. ;
Vangipurapu, Jagadish ;
Vestergaard, Henrik ;
't Hart, Leen M. ;
Adamski, Jerzy ;
Musholt, Petra B. ;
Brage, Soren ;
Brunak, Soren ;
Dermitzakis, Emmanouil ;
Frost, Gary ;
Hansen, Torben ;
Laakso, Markku ;
Pedersen, Oluf .
PLOS MEDICINE, 2020, 17 (06)
[3]   Ultrasonographic fatty liver indicator detects mild steatosis and correlates with metabolic/histological parameters in various liver diseases [J].
Ballestri, Stefano ;
Nascimbeni, Fabio ;
Baldelli, Enrica ;
Marrazzo, Alessandra ;
Romagnoli, Dante ;
Targher, Giovanni ;
Lonardo, Amedeo .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2017, 72 :57-65
[4]   Symtosis: A liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm [J].
Biswas, Mainak ;
Kuppili, Venkatanareshbabu ;
Edla, Damodar Reddy ;
Suri, Harman S. ;
Saba, Luca ;
Marinhoe, Rui Tato ;
Sanches, J. Miguel ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 155 :165-177
[5]   Machine learning for medical ultrasound: status, methods, and future opportunities [J].
Brattain, Laura J. ;
Telfer, Brian A. ;
Dhyani, Manish ;
Grajo, Joseph R. ;
Samir, Anthony E. .
ABDOMINAL RADIOLOGY, 2018, 43 (04) :786-799
[6]   Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images [J].
Byra, Michal ;
Styczynski, Grzegorz ;
Szmigielski, Cezary ;
Kalinowski, Piotr ;
Michalowski, Lukasz ;
Paluszkiewicz, Rafal ;
Ziarkiewicz-Wroblewska, Bogna ;
Zieniewicz, Krzysztof ;
Sobieraj, Piotr ;
Nowicki, Andrzej .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2018, 13 (12) :1895-1903
[7]   Standardized Approach for ROI-Based Measurements of Proton Density Fat Fraction and R2*in the Liver [J].
Campo, Camilo A. ;
Hernando, Diego ;
Schubert, Tilman ;
Bookwalter, Candice A. ;
Van Pay, Andrew J. ;
Reeder, Scott B. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2017, 209 (03) :592-603
[8]   Application of Deep Learning in Quantitative Analysis of 2-Dimensional Ultrasound Imaging of Nonalcoholic Fatty Liver Disease [J].
Cao, Wen ;
An, Xing ;
Cong, Longfei ;
Lyu, Chaoyang ;
Zhou, Qian ;
Guo, Ruijun .
JOURNAL OF ULTRASOUND IN MEDICINE, 2020, 39 (01) :51-59
[9]   Liver disease classification from ultrasound using multi-scale CNN [J].
Che, Hui ;
Brown, Lloyd G. ;
Foran, David J. ;
Nosher, John L. ;
Hacihaliloglu, Ilker .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (09) :1537-1548
[10]   Limits of Fat Quantification in the Presence of Iron Overload [J].
Colgan, Timothy J. ;
Zhao, Ruiyang ;
Roberts, Nathan T. ;
Hernando, Diego ;
Reeder, Scott B. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (04) :1166-1174