Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene

被引:27
作者
Li, Jinhu [1 ,2 ]
Ye, Xinhao [1 ]
Burra, Kiran G. [2 ]
Lu, Wei [1 ]
Wang, Zhiwei [2 ,3 ]
Liu, Xuan [2 ,4 ]
Gupta, Ashwani K. [2 ]
机构
[1] Anhui Univ Sci & Technol, Coll Safety & Engn, Huainan 232001, Peoples R China
[2] Univ Maryland, Dept Mech Engn, Combust Lab, College Pk, MD 20742 USA
[3] Henan Univ Technol, Coll Environm Engn, Zhengzhou 450001, Peoples R China
[4] Hunan Univ, Coll Environm Sci & Engn, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Co-pyrolysis; CO2-assisted co-gasification; Syngas; Recovered energy; Synergistic effect; Plastic mixtures; STEAM GASIFICATION; PLASTIC WASTE; POLYETHYLENE TEREPHTHALATE; SYNTHETIC-POLYMERS; AIR GASIFICATION; FLUIDIZED-BED; BIOMASS; FUEL; RECOVERY;
D O I
10.1016/j.apenergy.2023.120750
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermal conversion of waste plastic products can provide a promising solution to the issues of environmental pollution, waste management, and energy needs. However, our present understanding on the thermal reforming of different kinds of plastic wastes mixtures during their co-pyrolysis and co-gasification for syngas production and energy recovery is insufficient. Non-selective urban polypropylene (PP) and polystyrene (PS) waste plastics were chosen for the investigations reported here. Thermal degradation properties of PP and PS as well as their blends in different mass ratios were investigated via thermogravimetric (TG) analysis. Co-pyrolysis and CO2- assisted co-gasification of PP-PS blends were then conducted using a fixed-bed reactor at a temperature of 1173 K. Experimental results from the blends were then compared with the weighted value calculated from their component feedstocks to quantify the degree of synergistic effect. TG results showed that the co-treatment of PP and PS enhanced the respective devolatilization process. The co-pyrolysis of PP and PS enhanced their thermal cracking, leading to synergistic increases in the yields of H2, light hydrocarbons (HC) and total syngas. In co -gasification, the reforming reaction involving CO2 was synergistically enhanced, resulting in the increased yields of H2 and HC. The gasification reactivity of carbon black improved during the co-processing of PP and PS due to the synergistic effect between the two different kinds of plastics. Higher synergistic effects were observed from the plastic mixtures having higher PS content that resulted in increased yield of syngas. Co-gasification of PP-PS blends having 40% PP content (2P3S) exhibited the maximum synergistic effect on H2, CO, and total syngas showing increased yields by 88.8%, 77.7%, and 74.2% respectively. The lowest synergistic effect was observed for HC that showed increased yield of only 25.1%. The optimal CO2 consumption was also observed from the co-gasification of 2P3S. Each gram of 2P3S feedstock consumed approximately 1.80 g of CO2 to result in highest recovered energy of 27.49 kJ/g and the maximum overall energy efficiency of 43.2%. The results revealed that enhanced thermal cracking and CO2 reforming reaction, along with the improved reactivity of carbon black were mainly responsible for increased yields of H2, HC, CO and total syngas during co-gasification. This study contributes to the fundamental understanding of co-processing of non-separated waste plastics for enhanced syngas production and energy recovery, elucidating the synergistic effect between the various kinds of plastics during their co-pyrolysis and co-gasification.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Synergistic effects on co-pyrolysis of lignite and high-sulfur swelling coal
    Fei, Jinxia
    Zhang, Jie
    Wang, Fuchen
    Wang, Jie
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2012, 95 : 61 - 67
  • [32] Synergistic Effects in Co-Gasification of Willow and Cedar Blended Char in CO2 Media
    Koido, Kenji
    Endo, Kenji
    Morimoto, Hidetsugu
    Ohashi, Hironori
    Sato, Michio
    ENERGIES, 2024, 17 (16)
  • [33] Synergistic effect of the cotton stalk and high-ash coal on gas production during co-pyrolysis/gasification
    Yang, Panbo
    Zhao, Shuheng
    Zhang, Quanguo
    Hu, Jianjun
    Liu, Ronghou
    Huang, Zhen
    Gao, Yulong
    BIORESOURCE TECHNOLOGY, 2021, 336
  • [34] Regulation of co-pyrolysis behavior of Naomaohu coal and polypropylene by controlling the cracking of polypropylene pyrolysis volatiles
    Liu, Yang
    Wang, Xueting
    Zhong, Mei
    Dai, Zhenghua
    Tursun, Yalkunjan
    Li, Jian
    Jin, Lijun
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 181
  • [35] Synergistic effect on co-gasification reactivity of biomass-petroleum coke blended char
    Wei, Juntao
    Guo, Qinghua
    Gong, Yan
    Ding, Lu
    Yu, Guangsuo
    BIORESOURCE TECHNOLOGY, 2017, 234 : 33 - 39
  • [36] Co-gasification of coal and biomass: synergistic effects on gasification reactivity induced by inherent organic components
    Zhang, Wenjian
    Li, Wenyu
    Wu, Zhusen
    Yang, Xueting
    Hu, Jiahao
    Su, Yawei
    Li, Pei
    Li, Xiao
    INTERNATIONAL JOURNAL OF COAL PREPARATION AND UTILIZATION, 2024, 44 (12) : 2139 - 2154
  • [37] Co-pyrolysis of macroalgae and lignocellulosic biomass: Synergistic effect, optimization studies, modeling, and simulation of effects of co-pyrolysis parameters on yields
    Uzoejinwa, Benjamin Bernard
    He, Xiuhua
    Wang, Shuang
    Abomohra, Abd El-Fatah
    Hu, Yamin
    He, Zhixia
    Wang, Qian
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 136 (05) : 2001 - 2016
  • [38] Effects of Different Conditions on Co-Pyrolysis Behavior of Corn Stover and Polypropylene
    Wu, Fengze
    Ben, Haoxi
    Yang, Yunyi
    Jia, Hang
    Wang, Rui
    Han, Guangting
    POLYMERS, 2020, 12 (04)
  • [39] Synergistic Effects and Kinetics in Co-Pyrolysis of Waste Tire With Five Agricultural Residues Using Thermogravimetric Analysis
    Wang, Zhiwei
    Guo, Shuaihua
    Chen, Gaofeng
    Zhang, Mengju
    Sun, Tanglei
    Chen, Yan
    Wu, Mengge
    Xin, Xiaofei
    Yang, Shuhua
    Lei, Tingzhou
    Burra, Kiran G.
    Gupta, Ashwani K.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2023, 145 (12):
  • [40] Synergistic effects of biomass and polyurethane co-pyrolysis on the yield, reactivity, and heating value of biochar at high temperatures
    Wang, Xuebin
    Ma, Daoyang
    Jin, Qiming
    Deng, Shuanghui
    Stancin, Hrvoje
    Tan, Houzhang
    Mikulcic, Hrvoje
    FUEL PROCESSING TECHNOLOGY, 2019, 194