Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene

被引:27
作者
Li, Jinhu [1 ,2 ]
Ye, Xinhao [1 ]
Burra, Kiran G. [2 ]
Lu, Wei [1 ]
Wang, Zhiwei [2 ,3 ]
Liu, Xuan [2 ,4 ]
Gupta, Ashwani K. [2 ]
机构
[1] Anhui Univ Sci & Technol, Coll Safety & Engn, Huainan 232001, Peoples R China
[2] Univ Maryland, Dept Mech Engn, Combust Lab, College Pk, MD 20742 USA
[3] Henan Univ Technol, Coll Environm Engn, Zhengzhou 450001, Peoples R China
[4] Hunan Univ, Coll Environm Sci & Engn, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Co-pyrolysis; CO2-assisted co-gasification; Syngas; Recovered energy; Synergistic effect; Plastic mixtures; STEAM GASIFICATION; PLASTIC WASTE; POLYETHYLENE TEREPHTHALATE; SYNTHETIC-POLYMERS; AIR GASIFICATION; FLUIDIZED-BED; BIOMASS; FUEL; RECOVERY;
D O I
10.1016/j.apenergy.2023.120750
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermal conversion of waste plastic products can provide a promising solution to the issues of environmental pollution, waste management, and energy needs. However, our present understanding on the thermal reforming of different kinds of plastic wastes mixtures during their co-pyrolysis and co-gasification for syngas production and energy recovery is insufficient. Non-selective urban polypropylene (PP) and polystyrene (PS) waste plastics were chosen for the investigations reported here. Thermal degradation properties of PP and PS as well as their blends in different mass ratios were investigated via thermogravimetric (TG) analysis. Co-pyrolysis and CO2- assisted co-gasification of PP-PS blends were then conducted using a fixed-bed reactor at a temperature of 1173 K. Experimental results from the blends were then compared with the weighted value calculated from their component feedstocks to quantify the degree of synergistic effect. TG results showed that the co-treatment of PP and PS enhanced the respective devolatilization process. The co-pyrolysis of PP and PS enhanced their thermal cracking, leading to synergistic increases in the yields of H2, light hydrocarbons (HC) and total syngas. In co -gasification, the reforming reaction involving CO2 was synergistically enhanced, resulting in the increased yields of H2 and HC. The gasification reactivity of carbon black improved during the co-processing of PP and PS due to the synergistic effect between the two different kinds of plastics. Higher synergistic effects were observed from the plastic mixtures having higher PS content that resulted in increased yield of syngas. Co-gasification of PP-PS blends having 40% PP content (2P3S) exhibited the maximum synergistic effect on H2, CO, and total syngas showing increased yields by 88.8%, 77.7%, and 74.2% respectively. The lowest synergistic effect was observed for HC that showed increased yield of only 25.1%. The optimal CO2 consumption was also observed from the co-gasification of 2P3S. Each gram of 2P3S feedstock consumed approximately 1.80 g of CO2 to result in highest recovered energy of 27.49 kJ/g and the maximum overall energy efficiency of 43.2%. The results revealed that enhanced thermal cracking and CO2 reforming reaction, along with the improved reactivity of carbon black were mainly responsible for increased yields of H2, HC, CO and total syngas during co-gasification. This study contributes to the fundamental understanding of co-processing of non-separated waste plastics for enhanced syngas production and energy recovery, elucidating the synergistic effect between the various kinds of plastics during their co-pyrolysis and co-gasification.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Synergistic effects on cellulose and lignite co-pyrolysis and co-liquefaction
    Zhao, Yuying
    Cao, Hong
    Yao, Chunli
    Li, Rui
    Wu, Yulong
    BIORESOURCE TECHNOLOGY, 2020, 299 (299)
  • [22] Insight into synergistic effects of biomass-polypropylene co-pyrolysis using representative biomass constituents
    Chen, Rongjie
    Zhang, Shiyu
    Cong, Kunlin
    Li, Qinghai
    Zhang, Yanguo
    BIORESOURCE TECHNOLOGY, 2020, 307
  • [23] Co-pyrolysis of waste tire with agricultural and forestry residues: Pyrolysis behavior, products distribution and synergistic effects
    Wang, Zhiwei
    Guo, Shuaihua
    Chen, Gaofeng
    Zhang, Mengju
    Sun, Tanglei
    Wang, Qun
    Zhu, Huina
    Yang, Shuhua
    Chen, Yan
    Wu, Mengge
    Lei, Tingzhou
    Burra, Kiran G.
    Gupta, Ashwani K.
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 114
  • [24] Synergistic effects of co-gasification of municipal solid waste and biomass in fixed-bed gasifier
    Cai, Jianjun
    Zeng, Ronghua
    Zheng, Wenheng
    Wang, Shubin
    Han, Jie
    Li, Kaiqiang
    Luo, Ming
    Tang, Xingying
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 148 : 1 - 12
  • [25] A comprehensive review on co-pyrolysis of lignocellulosic biomass and polystyrene
    Anshu, Kumari
    Kenttamaa, Hilkka I.
    Thengane, Sonal K.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 205
  • [26] Synergistic effects and products distribution during Co-pyrolysis of biomass and plastics
    Wu, Mengge
    Wang, Zhiwei
    Chen, Gaofeng
    Zhang, Mengju
    Sun, Tanglei
    Wang, Qun
    Zhu, Huina
    Guo, Shuaihua
    Chen, Yan
    Zhu, Youjian
    Lei, Tingzhou
    Burra, Kiran G.
    Gupta, Ashwani K.
    JOURNAL OF THE ENERGY INSTITUTE, 2023, 111
  • [27] A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics
    Ozsin, Gamzenur
    Putun, Ayse Eren
    JOURNAL OF CLEANER PRODUCTION, 2018, 205 : 1127 - 1138
  • [28] The synergistic effect of co-pyrolysis of oil shale and microalgae to produce syngas
    Hu, Zhifeng
    Ma, Xiaoqian
    Li, Longjun
    JOURNAL OF THE ENERGY INSTITUTE, 2016, 89 (03) : 447 - 455
  • [29] Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production
    Suriapparao, Dadi V.
    Boruah, Bhanupriya
    Raja, Dharavath
    Vinu, R.
    FUEL PROCESSING TECHNOLOGY, 2018, 175 : 64 - 75
  • [30] Study on the effects of aging on the pyrolysis of plastic and the synergistic mechanisms of co-pyrolysis with lignite
    Xu, Yang-Yang
    Zou, Hai-Xu
    Gao, Yuan
    Li, Zheng-Hong
    Wei, Wen-Han
    Fan, Xing
    Bai, Xiang
    Dilixiati, Yierxiati
    Pidamaimaiti, Guligena
    Wei, Xian-Yong
    JOURNAL OF THE ENERGY INSTITUTE, 2025, 118