Development of rapid and precise approach for quantification of bacterial taxa correlated with soil health

被引:5
作者
Abdelmoneim, Taghreed Khaled [1 ,2 ]
Mohamed, Mahmoud S. M. [3 ]
Abdelhamid, Ismail Abdelshafy [2 ]
Wahdan, Sara Fareed Mohamed [4 ]
Atia, Mohamed A. M. [1 ]
机构
[1] Agr Res Ctr ARC, Agr Genet Engn Res Inst AGERI, Genome Mapping Dept, Giza, Egypt
[2] Cairo Univ, Fac Sci, Dept Chem, Giza, Egypt
[3] Cairo Univ, Fac Sci, Dept Bot & Microbiol, Giza, Egypt
[4] Suez Canal Univ, Fac Sci, Dept Bot & Microbiol, Ismailia, Egypt
关键词
bacteriome; soil health; 16S rRNA gene; qPCR; wheat productivity; taxon-specific primers; next-generation sequencing; MICROBIAL COMMUNITIES; PLANT; DIVERSITY; RESPONSES; PRIMERS; WHEAT;
D O I
10.3389/fmicb.2022.1095045
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The structure and dynamic of soil bacterial community play a crucial role in soil health and plant productivity. However, there is a gap in studying the un-/or reclaimed soil bacteriome and its impact on future plant performance. The 16S metagenomic analysis is expensive and utilize sophisticated pipelines, making it unfavorable for researchers. Here, we aim to perform (1) in silico and in vitro validation of taxon-specific qPCR primer-panel in the detection of the beneficial soil bacterial community, to ensure its specificity and precision, and (2) multidimensional analysis of three soils/locations in Egypt ('Q', 'B', and 'G' soils) in terms of their physicochemical properties, bacteriome composition, and wheat productivity as a model crop. The in silico results disclosed that almost all tested primers showed high specificity and precision toward the target taxa. Among 17 measured soil properties, the electrical conductivity (EC) value (up to 5 dS/m) of 'Q' soil provided an efficient indicator for soil health among the tested soils. The 16S NGS analysis showed that the soil bacteriome significantly drives future plant performance, especially the abundance of Proteobacteria and Actinobacteria as key indicators. The functional prediction analysis results disclosed a high percentage of N-fixing bacterial taxa in 'Q' soil compared to other soils, which reflects their positive impact on wheat productivity. The taxon-specific qPCR primer-panel results revealed a precise quantification of the targeted taxa compared to the 16S NGS analysis. Moreover, 12 agro-morphological parameters were determined for grown wheat plants, and their results showed a high yield in the 'Q' soil compared to other soils; this could be attributed to the increased abundance of Proteobacteria and Actinobacteria, high enrichment in nutrients (N and K), or increased EC/nutrient availability. Ultimately, the potential use of a taxon-specific qPCR primer-panel as an alternative approach to NGS provides a cheaper, user-friendly setup with high accuracy.
引用
收藏
页数:14
相关论文
共 60 条
[1]   Pangenomics in Microbial and Crop Research: Progress, Applications, and Perspectives [J].
Aggarwal, Sumit Kumar ;
Singh, Alla ;
Choudhary, Mukesh ;
Kumar, Aundy ;
Rakshit, Sujay ;
Kumar, Pardeep ;
Bohra, Abhishek ;
Varshney, Rajeev K. .
GENES, 2022, 13 (04)
[2]   Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities [J].
Ahmad, Farah ;
Ahmad, Iqbal ;
Khan, M. S. .
MICROBIOLOGICAL RESEARCH, 2008, 163 (02) :173-181
[3]  
Allen DE, 2011, SOIL BIOL, V29, P25, DOI 10.1007/978-3-642-20256-8_2
[4]   Agronomical, physiological and molecular evaluation reveals superior salt-tolerance in bread wheat through salt-induced priming approach [J].
Alzahrani, Othman ;
Abouseadaa, Heba ;
Abdelmoneim, Taghreed K. ;
Alshehri, Mohammed A. ;
El-Mogy, Mohamed M. ;
El-Beltagi, Hossam S. ;
Atia, Mohamed A. M. .
NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2021, 49 (02) :1-21
[5]  
Anderson KA, 1995, J AOAC INT, V78, P1516
[6]   Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data [J].
Asshauer, Kathrin P. ;
Wemheuer, Bernd ;
Daniel, Rolf ;
Meinicke, Peter .
BIOINFORMATICS, 2015, 31 (17) :2882-2884
[7]   The role of root exudates in rhizosphere interations with plants and other organisms [J].
Bais, Harsh P. ;
Weir, Tiffany L. ;
Perry, Laura G. ;
Gilroy, Simon ;
Vivanco, Jorge M. .
ANNUAL REVIEW OF PLANT BIOLOGY, 2006, 57 :233-266
[8]   Community-Driven Data Analysis Training for Biology [J].
Batut, Berenice ;
Hiltemann, Saskia ;
Bagnacani, Andrea ;
Baker, Dannon ;
Bhardwaj, Vivek ;
Blank, Clemens ;
Bretaudeau, Anthony ;
Brillet-Gueguen, Loraine ;
Cech, Martin ;
Chilton, John ;
Clements, Dave ;
Doppelt-Azeroual, Olivia ;
Erxleben, Anika ;
Freeberg, Mallory Ann ;
Gladman, Simon ;
Hoogstrate, Youri ;
Hotz, Hans-Rudolf ;
Houwaart, Torsten ;
Jagtap, Pratik ;
Lariviere, Delphine ;
Le Corguille, Gildas ;
Manke, Thomas ;
Mareuil, Fabien ;
Ramirez, Fidel ;
Ryan, Devon ;
Sigloch, Florian Christoph ;
Soranzo, Nicola ;
Wolff, Joachim ;
Videm, Pavankumar ;
Wolfien, Markus ;
Wubuli, Aisanjiang ;
Yusuf, Dilmurat ;
Taylor, James ;
Backofen, Rolf ;
Nekrutenko, Anton ;
Gruening, Bjoern .
CELL SYSTEMS, 2018, 6 (06) :752-+
[9]   Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture [J].
Bhattacharyya, P. N. ;
Jha, D. K. .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2012, 28 (04) :1327-1350
[10]   Actinomycetes benefaction role in soil and plant health [J].
Bhatti, Asma Absar ;
Haq, Shamsul ;
Bhat, Rouf Ahmad .
MICROBIAL PATHOGENESIS, 2017, 111 :458-467