Since their first adaptation for plant genome editing, clustered regularly interspaced short palindromic repeats/CRISPR-associated system nucleases and tools have revolutionized the field. While early approaches focused on targeted mutagenesis that relies on mutagenic repair of induced double-strand breaks, newly developed tools now enable the precise induction of predefined modifications. Constant efforts to optimize these tools have led to the generation of more efficient base editors with enlarged editing windows and have enabled previously unachievable C-G transversions. Prime editors were also optimized for the application in plants and now allow to accurately induce substitutions, insertions, and deletions. Recently, great progress was made through precise restructuring of chromosomes, which enables not only the breakage or formation of genetic linkages but also the swapping of promoters.