Beyond the Sottile-Sturmfels Degeneration of a Semi-Infinite Grassmannian

被引:1
作者
Feigin, Evgeny [1 ,2 ]
Makhlin, Igor [2 ]
Popkovich, Alexander [1 ]
机构
[1] HSE Univ, Fac Math, Ulitsa Usacheva 6, Moscow 119048, Russia
[2] Skolkovo Inst Sci & Technol, Ctr Adv Studies, Bolshoy Blvd 30,Bld 1, Moscow 121205, Russia
关键词
MODULES; POLYTOPES; BASES;
D O I
10.1093/imrn/rnac116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study toric degenerations of semi-infinite Grassmannians (a.k.a. quantum Grassmannians). While the toric degenerations of the classical Grassmannians are well studied, the only known example in the semi-infinite case is due to Sottile and Sturmfels. We start by providing a new interpretation of the Sottile-Sturmfels construction by finding a poset such that their degeneration is the toric variety of the order polytope of the poset. We then use our poset to construct and study a new toric degeneration in the semi-infinite case. Our construction is based on the notion of poset polytopes introduced by Fang-Fourier-Litza-Pegel. As an application, we introduce semi-infinite PBW-semistandard tableaux, giving a basis in the homogeneous coordinate ring of a semi-infinite Grassmannian.
引用
收藏
页码:10037 / 10066
页数:30
相关论文
共 33 条
[1]   Gelfand-Tsetlin polytopes and Feigin-Fourier-Littelmann-Vinberg polytopes as marked poset polytopes [J].
Ardila, Federico ;
Bliem, Thomas ;
Salazar, Dido .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (08) :2454-2462
[2]  
Braverman A, 2014, MATH ANN, V359, P45, DOI 10.1007/s00208-013-0985-3
[3]   Beilinson-Drinfeld Schubert varieties and global Demazure modules [J].
Dumanski, Ilya ;
Feigin, Evgeny ;
Finkelberg, Michael .
FORUM OF MATHEMATICS SIGMA, 2021, 9
[4]   A CONTINUOUS FAMILY OF MARKED POSET POLYTOPES [J].
Fang, Xin ;
Fourier, Ghislain ;
Litza, Jan-Philipp ;
Pegel, Christoph .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) :611-639
[5]  
[Fang Xin Fang Xin], 2017, [Труды Московского математического общества, Trudy Moskovskogo matematicheskogo obshchestva], V78, P331
[6]  
Fang X, 2017, EMS SER CONGR REP, P187
[7]   Marked chain-order polytopes [J].
Fang, Xin ;
Fourier, Ghislain .
EUROPEAN JOURNAL OF COMBINATORICS, 2016, 58 :267-282
[8]  
Feigin, REDUCED ARC SCHEMES
[9]  
FEIGIN BL, 1990, COMMUN MATH PHYS, V128, P161, DOI 10.1007/BF02097051
[10]   Semi-infinite Plucker Relations and Weyl Modules [J].
Feigin, Evgeny ;
Makedonskyi, Ievgen .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (14) :4357-4394