Effects of different atomic passivation on conductive and dielectric properties of silicon carbide nanowires

被引:33
作者
Ma, Yun [1 ]
Yan, Han [1 ]
Yu, Xiao-Xia [2 ]
Gong, Pei [3 ]
Li, Ya-Lin [1 ]
Ma, Wan-Duo [1 ]
Fang, Xiao-Yong [1 ]
机构
[1] Yanshan Univ, Sch Sci, Key Lab Microstruct Mat Phys Hebei Prov, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Sch Mech Engn, Qinhuangdao 066004, Peoples R China
[3] Nanyang Inst Technol, Sch Math & Phys, Nanyang 473001, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSPORT-PROPERTIES; ELECTRONIC DEVICES; DANGLING BONDS; SEMICONDUCTOR; MICROWAVE; MATRICES; FILMS;
D O I
10.1063/5.0187116
中图分类号
O59 [应用物理学];
学科分类号
摘要
Based on the transport and polarization relaxation theories, the effects of hydrogen, fluorine, and chlorine atom passivation on the conductivity and dielectric properties of silicon carbide nanowires (SiCNWs) were numerically simulated. The results show that passivation can decrease the dark conductivity of SiCNWs and increase its ultraviolet photoconductivity. Among them, the photoconductivity of univalent (H) passivated SiCNWs is better than that of seven-valent (Cl, F) passivated SiCNWs. In terms of dielectric properties, the passivated SiCNWs exhibit a strong dielectric response in both deep ultraviolet and microwave regions. Hydrogen passivation SiCNWs produce the strongest dielectric response in deep ultraviolet, while fluorine passivation SiCNWs produce the strongest dielectric relaxation in the microwave band, which indicates that atomic passivation SiCNWs have a wide range of applications in ultraviolet optoelectronic devices and microwave absorption and shielding.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review [J].
Casady, JB ;
Johnson, RW .
SOLID-STATE ELECTRONICS, 1996, 39 (10) :1409-1422
[2]   Mechanical Properties of Silicon Carbide Nanowires: Effect of Size-Dependent Defect Density [J].
Cheng, Guangming ;
Chang, Tzu-Hsuan ;
Qin, Qingquan ;
Huang, Hanchen ;
Zhu, Yong .
NANO LETTERS, 2014, 14 (02) :754-758
[3]   First principles band gap engineering of [110] oriented 3C-SiC nanowires [J].
Cuevas, Jose Luis ;
De Santiago, Francisco ;
Ramirez, Jesus ;
Trejo, Alejandro ;
Miranda, Alvaro ;
Perez, Luis Antonio ;
Cruz-Irisson, Miguel .
COMPUTATIONAL MATERIALS SCIENCE, 2018, 142 :268-276
[4]  
Dressel M., 2002, Electrodynamics of Solids
[5]   Silicon Carbide as a Platform for Power Electronics [J].
Eddy, C. R., Jr. ;
Gaskill, D. K. .
SCIENCE, 2009, 324 (5933) :1398-1400
[6]   ELECTRICAL CONTACTS TO BETA-SILICON CARBIDE THIN-FILMS [J].
EDMOND, JA ;
RYU, J ;
GLASS, JT ;
DAVIS, RF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (02) :359-362
[7]   Stability of luminescent 3C-SiC nanocrystallites in aqueous solution [J].
Fan, J. Y. ;
Wu, X. L. ;
Zhao, P. Q. ;
Chu, Paul K. .
PHYSICS LETTERS A, 2006, 360 (02) :336-338
[8]   LOW-TEMPERATURE GROWTH OF SIC THIN-FILMS ON SI AND 6H-SIC BY SOLID-SOURCE MOLECULAR-BEAM EPITAXY [J].
FISSEL, A ;
SCHROTER, B ;
RICHTER, W .
APPLIED PHYSICS LETTERS, 1995, 66 (23) :3182-3184
[9]   Temperature-dependent dielectric and microwave absorption properties of silicon carbide fiber-reinforced oxide matrices composite [J].
Gao, Hui ;
Luo, Fa ;
Wen, Qinlong ;
Hu, Yang ;
Qing, Yuchang .
JOURNAL OF MATERIALS SCIENCE, 2018, 53 (22) :15465-15473
[10]   HYDROGEN PASSIVATION OF DONORS AND ACCEPTERS IN SIC [J].
GENDRON, F ;
PORTER, LM ;
PORTE, C ;
BRINGUIER, E .
APPLIED PHYSICS LETTERS, 1995, 67 (09) :1253-1255