An enhanced sparse autoencoder for machinery interpretable fault diagnosis

被引:5
作者
Niu, Maogui [1 ]
Jiang, Hongkai [1 ]
Wu, Zhenghong [1 ]
Shao, Haidong [2 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
sparse coding; multi-layer decoders; fault diagnosis; aircraft engine bearing data; fast iterative shrinkage-thresholding algorithm; SHRINKAGE-THRESHOLDING ALGORITHM;
D O I
10.1088/1361-6501/ad24ba
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interpretability of individual components within existing autoencoders remains insufficiently explored. This paper aims to address this gap by delving into the interpretability of the encoding and decoding structures and their correlation with the physical significance of vibrational signals. To achieve this, the Sparse Coding with Multi-layer Decoders (SC-MD) model is proposed, which facilitates fault diagnosis from two perspectives: the working principles of the model itself and the evolving trends of fault features. Specifically, a sparse coding protocol to prevent L1-norm collapse is proposed in the encoding process, regularizing the encoding to ensure that each latent code component possesses variance greater than a fixed threshold on a set of sparse representations given the input data. Subsequently, a multi-layer decoder structure is designed to capture the intricate mapping relationship between features and fault patterns. Finally, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is employed as the solver for the SC-MD model, enabling end-to-end updates of all parameters by unfolding FISTA. The coherent theoretical framework ensures the interpretability of SC-MD. Utilizing aeroengine bearing data, we demonstrate the exceptional performance of our proposed approach under both normal conditions and intense noise, as compared to state-of-the-art deep learning methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Discriminative Sparse Autoencoder for Gearbox Fault Diagnosis Toward Complex Vibration Signals
    Zhang, Zhiqiang
    Yang, Qingyu
    Zi, Yanyang
    Wu, Zongze
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [22] An Interpretable Parallel Spatial CNN-LSTM Architecture for Fault Diagnosis in Rotating Machinery
    Zhou, Qianyu
    Tang, Jiong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (19): : 31730 - 31744
  • [23] A Novel Rotating Machinery Fault Diagnosis System Using Ensemble Learning Capsule Autoencoder
    Chen, Hao
    Wang, Xian-Bo
    Yang, Zhi-Xin
    IEEE SENSORS JOURNAL, 2024, 24 (01) : 1018 - 1027
  • [24] Interpretable domain adaptation transformer: a transfer learning method for fault diagnosis of rotating machinery
    Liu, Dongdong
    Cui, Lingli
    Wang, Gang
    Cheng, Weidong
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2025, 24 (02): : 1187 - 1200
  • [25] NMF-SAE: AN INTERPRETABLE SPARSE AUTOENCODER FOR HYPERSPECTRAL UNMIXING
    Xiong, Fengchao
    Zhou, Jun
    Ye, Minchao
    Lu, Jianfeng
    Qian, Yuntao
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1865 - 1869
  • [26] Sparse representation based on adaptive multiscale features for robust machinery fault diagnosis
    Zhu, Huijie
    Wang, Xinqing
    Zhao, Yang
    Li, Yanfeng
    Wang, Wenfu
    Li, Liping
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2015, 229 (12) : 2303 - 2313
  • [27] Manifold learning-assisted sparse filtering method for machinery fault diagnosis
    Wang, Qian
    Peng, Demin
    Jiang, Xingxing
    Song, Qiuyu
    Zhu, Zhongkui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)
  • [28] Weak fault diagnosis of machinery using Laplacian eigenmaps and parallel sparse filtering
    Ji, Shanshan
    Wang, Jinrui
    Han, Baokun
    Zhang, Zongzhen
    Bao, Huaiqian
    An, Yuxi
    Zhang, Ming
    Wang, Hualong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)
  • [29] Fault Diagnosis Using Improved Discrimination Locality Preserving Projections Integrated With Sparse Autoencoder
    He, Yan-Lin
    Li, Kun
    Zhang, Ning
    Xu, Yuan
    Zhu, Qun-Xiong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [30] Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
    Zhu, Haiping
    Cheng, Jiaxin
    Zhang, Cong
    Wu, Jun
    Shao, Xinyu
    APPLIED SOFT COMPUTING, 2020, 88