An enhanced sparse autoencoder for machinery interpretable fault diagnosis

被引:5
|
作者
Niu, Maogui [1 ]
Jiang, Hongkai [1 ]
Wu, Zhenghong [1 ]
Shao, Haidong [2 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
sparse coding; multi-layer decoders; fault diagnosis; aircraft engine bearing data; fast iterative shrinkage-thresholding algorithm; SHRINKAGE-THRESHOLDING ALGORITHM;
D O I
10.1088/1361-6501/ad24ba
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interpretability of individual components within existing autoencoders remains insufficiently explored. This paper aims to address this gap by delving into the interpretability of the encoding and decoding structures and their correlation with the physical significance of vibrational signals. To achieve this, the Sparse Coding with Multi-layer Decoders (SC-MD) model is proposed, which facilitates fault diagnosis from two perspectives: the working principles of the model itself and the evolving trends of fault features. Specifically, a sparse coding protocol to prevent L1-norm collapse is proposed in the encoding process, regularizing the encoding to ensure that each latent code component possesses variance greater than a fixed threshold on a set of sparse representations given the input data. Subsequently, a multi-layer decoder structure is designed to capture the intricate mapping relationship between features and fault patterns. Finally, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is employed as the solver for the SC-MD model, enabling end-to-end updates of all parameters by unfolding FISTA. The coherent theoretical framework ensures the interpretability of SC-MD. Utilizing aeroengine bearing data, we demonstrate the exceptional performance of our proposed approach under both normal conditions and intense noise, as compared to state-of-the-art deep learning methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery
    Wu, Xinya
    Zhang, Yan
    Cheng, Changming
    Peng, Zhike
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 149
  • [22] Attention Recurrent Autoencoder Hybrid Model for Early Fault Diagnosis of Rotating Machinery
    Kong, Xiangwei
    Li, Xueyi
    Zhou, Qingzhao
    Hu, Zhiyong
    Shi, Cheng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71 : 17 - 17
  • [23] Attention Recurrent Autoencoder Hybrid Model for Early Fault Diagnosis of Rotating Machinery
    Kong, Xiangwei
    Li, Xueyi
    Zhou, Qingzhao
    Hu, Zhiyong
    Shi, Cheng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [24] A Novel Interpretable Model via Algorithm Unrolling for Intelligent Fault Diagnosis of Machinery
    Rao, Fengpei
    Zeng, Ming
    Cheng, Yiwei
    IEEE SENSORS JOURNAL, 2024, 24 (01) : 495 - 505
  • [25] Sparse representation learning for fault feature extraction and diagnosis of rotating machinery
    Ma, Sai
    Han, Qinkai
    Chu, Fulei
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [26] Adaptive feature extraction using sparse coding for machinery fault diagnosis
    Liu, Haining
    Liu, Chengliang
    Huang, Yixiang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2011, 25 (02) : 558 - 574
  • [27] Rotating machinery fault diagnosis based on improver resonance sparse decomposition
    Yang, Wei
    Wang, Hongjun
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (23): : 8848 - 8851
  • [28] Construction of a deep sparse filtering network for rotating machinery fault diagnosis
    Cheng, Chun
    Zou, Wei
    Wang, Weiping
    Pecht, Michael
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2022, 236 (01) : 118 - 126
  • [29] Discriminative Sparse Autoencoder for Gearbox Fault Diagnosis Toward Complex Vibration Signals
    Zhang, Zhiqiang
    Yang, Qingyu
    Zi, Yanyang
    Wu, Zongze
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [30] Fault diagnosis of air-conditioning refrigeration system based on sparse autoencoder
    Wang, Zhiyi
    Zhong, Jiachen
    Li, Jingfan
    Xia, Cui
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2019, 14 (04) : 487 - 492