An enhanced sparse autoencoder for machinery interpretable fault diagnosis

被引:5
|
作者
Niu, Maogui [1 ]
Jiang, Hongkai [1 ]
Wu, Zhenghong [1 ]
Shao, Haidong [2 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
sparse coding; multi-layer decoders; fault diagnosis; aircraft engine bearing data; fast iterative shrinkage-thresholding algorithm; SHRINKAGE-THRESHOLDING ALGORITHM;
D O I
10.1088/1361-6501/ad24ba
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interpretability of individual components within existing autoencoders remains insufficiently explored. This paper aims to address this gap by delving into the interpretability of the encoding and decoding structures and their correlation with the physical significance of vibrational signals. To achieve this, the Sparse Coding with Multi-layer Decoders (SC-MD) model is proposed, which facilitates fault diagnosis from two perspectives: the working principles of the model itself and the evolving trends of fault features. Specifically, a sparse coding protocol to prevent L1-norm collapse is proposed in the encoding process, regularizing the encoding to ensure that each latent code component possesses variance greater than a fixed threshold on a set of sparse representations given the input data. Subsequently, a multi-layer decoder structure is designed to capture the intricate mapping relationship between features and fault patterns. Finally, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is employed as the solver for the SC-MD model, enabling end-to-end updates of all parameters by unfolding FISTA. The coherent theoretical framework ensures the interpretability of SC-MD. Utilizing aeroengine bearing data, we demonstrate the exceptional performance of our proposed approach under both normal conditions and intense noise, as compared to state-of-the-art deep learning methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Enhanced sparse filtering with strong noise adaptability and its application on rotating machinery fault diagnosis
    Zhang, Zongzhen
    Li, Shunming
    Wang, Jinrui
    Xin, Yu
    An, Zenghui
    Jiang, Xingxing
    NEUROCOMPUTING, 2020, 398 : 31 - 44
  • [12] Fault diagnosis method of rotating machinery based on stacked denoising autoencoder
    Chen, Zhouliang
    Li, Zhinong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3443 - 3449
  • [13] An autoencoder with adaptive transfer learning for intelligent fault diagnosis of rotating machinery
    Tang, Zhi
    Bo, Lin
    Liu, Xiaofeng
    Wei, Daiping
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (05)
  • [14] An interpretable deep feature aggregation framework for machinery incremental fault diagnosis
    Hu, Kui
    Chen, Qian
    Yao, Jintao
    He, Qingbo
    Peng, Zhike
    ADVANCED ENGINEERING INFORMATICS, 2025, 65
  • [15] Deep discriminative sparse representation learning for machinery fault diagnosis
    Yao, Renhe
    Jiang, Hongkai
    Jiang, Wenxin
    Liu, Yunpeng
    Dong, Yutong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [16] Machinery fault diagnosis based on a modified hybrid deep sparse autoencoder using a raw vibration time-series signal
    Saufi S.R.
    Isham M.F.
    Ahmad Z.A.
    Hasan M.D.A.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (04) : 3827 - 3838
  • [17] Fault Diagnosis Based on Batch-normalized Stacked Sparse Autoencoder
    Liu Xiaozhi
    Gao Yang
    Yang Yinghua
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 4141 - 4146
  • [18] Independent Component Analysis - Based Sparse Autoencoder in the Application of Fault Diagnosis
    Luo, Lin
    Su, Hongye
    Ban, Lan
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 1378 - 1382
  • [19] Weighted time series fault diagnosis based on a stacked sparse autoencoder
    Lv, Feiya
    Wen, Chenglin
    Liu, Meiqin
    Bao, Zhejing
    JOURNAL OF CHEMOMETRICS, 2017, 31 (09)
  • [20] A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
    Shao Haidong
    Jiang Hongkai
    Zhao Huiwei
    Wang Fuan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 95 : 187 - 204