Heterogeneous Integration of Graphene and HfO2 Memristors

被引:10
作者
Trstenjak, Urska [1 ,2 ]
Goss, Kalle [1 ,3 ]
Gutsche, Alexander [1 ,3 ]
Jo, Janghyun [4 ]
Wohlgemuth, Marcus [1 ,3 ]
Dunin-Borkowski, Rafal E. [4 ]
Gunkel, Felix [1 ,3 ]
Dittmann, Regina [1 ,3 ]
机构
[1] Forschungszentrum Julich, Peter Grunberg Inst 7, D-52428 Julich, Germany
[2] Jozef Stefan Inst, Adv Mat Dept, Ljubljana 1000, Slovenia
[3] JARA FIT, Julich Aachen Res Alliance, Julich, Germany
[4] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons, Julich, Germany
关键词
pulsed-laser deposition; quasi van der Waals growth; resistive random-access memory; resistive switching; DER-WAALS EPITAXY; RAMAN-SPECTRA; DEPOSITION; DEFECTS; CONTACT; SRTIO3; FILMS;
D O I
10.1002/adfm.202309558
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The past decade has seen a growing trend toward utilizing (quasi) van der Waals growth for the heterogeneous integration of various materials for advanced electronics. In this work, pulsed-laser deposition is used to grow HfO2 thin films on graphene/SiO2/Si. As graphene is easily damaged under standard oxide-film deposition conditions, the process needs to be adjusted to minimize the oxidation and the collision-induced damage. A systematic study is conducted in order to identify the crucial deposition parameters for diminishing the defect concentration in the graphene interlayer. For evaluating the quality of graphene, it is mainly relied on data obtained from Raman spectroscopy, using approaches beyond the Tuinstra-Koenig relation. The results show that the defects are mainly a consequence of the high kinetic energy of the plasma-plume particles. Using a relatively high Ar process pressure, a sufficiently low defect concentration is ensured, without compromising the quality of the HfO2 thin film. This enabled us to successfully prepare memristive devices with a filamentary type of switching, utilizing the graphene layer as a bottom electrode. The findings of this study can be easily transferred to other systems for the development of oxide electronic devices.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Ultra-low contact resistance in graphene devices at the Dirac point [J].
Anzi, Luca ;
Mansouri, Aida ;
Pedrinazzi, Paolo ;
Guerriero, Erica ;
Fiocco, Marco ;
Pesquera, Amaia ;
Centeno, Alba ;
Zurutuza, Amaia ;
Behnam, Ashkan ;
Carrion, Enrique A. ;
Pop, Eric ;
Sordan, Roman .
2D MATERIALS, 2018, 5 (02)
[2]   Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy [J].
Bae, Sang-Hoon ;
Lu, Kuangye ;
Han, Yimo ;
Kim, Sungkyu ;
Qiao, Kuan ;
Choi, Chanyeol ;
Nie, Yifan ;
Kim, Hyunseok ;
Kum, Hyun S. ;
Chen, Peng ;
Kong, Wei ;
Kang, Beom-Seok ;
Kim, Chansoo ;
Lee, Jaeyong ;
Baek, Yongmin ;
Shim, Jaewoo ;
Park, Jinhee ;
Joo, Minho ;
Muller, David A. ;
Lee, Kyusang ;
Kim, Jeehwan .
NATURE NANOTECHNOLOGY, 2020, 15 (04) :272-+
[3]   Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes [J].
Baeumer, Christoph ;
Schmitz, Christoph ;
Marchewka, Astrid ;
Mueller, David N. ;
Valenta, Richard ;
Hackl, Johanna ;
Raab, Nicolas ;
Rogers, Steven P. ;
Khan, M. Imtiaz ;
Nemsak, Slavomir ;
Shim, Moonsub ;
Menzel, Stephan ;
Schneider, Claus Michael ;
Waser, Rainer ;
Dittmann, Regina .
NATURE COMMUNICATIONS, 2016, 7
[4]   Hafnium Oxide (HfO2) - A Multifunctional Oxide: A Review on the Prospect and Challenges of Hafnium Oxide in Resistive Switching and Ferroelectric Memories [J].
Banerjee, Writam ;
Kashir, Alireza ;
Kamba, Stanislav .
SMALL, 2022, 18 (23)
[5]   HfO2-based resistive switching memory devices for neuromorphic computing [J].
Brivio, S. ;
Spiga, S. ;
Ielmini, D. .
NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (04)
[6]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[7]   Integration of Single Oriented Oxide Superlattices on Silicon Using Various Template Techniques [J].
Chen, Binbin ;
Jovanovic, Zoran ;
Abel, Stefan ;
Phu Tran Phong Le ;
Halisdemir, Ufuk ;
Smithers, Mark ;
Diaz-Fernandez, Daniel ;
Spreitzer, Matjaz ;
Fompeyrine, Jean ;
Rijnders, Guus ;
Koster, Gertjan .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (38) :42925-42932
[8]   2022 roadmap on neuromorphic computing and engineering [J].
Christensen, Dennis, V ;
Dittmann, Regina ;
Linares-Barranco, Bernabe ;
Sebastian, Abu ;
Le Gallo, Manuel ;
Redaelli, Andrea ;
Slesazeck, Stefan ;
Mikolajick, Thomas ;
Spiga, Sabina ;
Menzel, Stephan ;
Valov, Ilia ;
Milano, Gianluca ;
Ricciardi, Carlo ;
Liang, Shi-Jun ;
Miao, Feng ;
Lanza, Mario ;
Quill, Tyler J. ;
Keene, Scott T. ;
Salleo, Alberto ;
Grollier, Julie ;
Markovic, Danijela ;
Mizrahi, Alice ;
Yao, Peng ;
Yang, J. Joshua ;
Indiveri, Giacomo ;
Strachan, John Paul ;
Datta, Suman ;
Vianello, Elisa ;
Valentian, Alexandre ;
Feldmann, Johannes ;
Li, Xuan ;
Pernice, Wolfram H. P. ;
Bhaskaran, Harish ;
Furber, Steve ;
Neftci, Emre ;
Scherr, Franz ;
Maass, Wolfgang ;
Ramaswamy, Srikanth ;
Tapson, Jonathan ;
Panda, Priyadarshini ;
Kim, Youngeun ;
Tanaka, Gouhei ;
Thorpe, Simon ;
Bartolozzi, Chiara ;
Cleland, Thomas A. ;
Posch, Christoph ;
Liu, Shihchii ;
Panuccio, Gabriella ;
Mahmud, Mufti ;
Mazumder, Arnab Neelim .
NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (02)
[9]   Exploiting the switching dynamics of HfO2-based ReRAM devices for reliable analog memristive behavior [J].
Cueppers, F. ;
Menzel, S. ;
Bengel, C. ;
Hardtdegen, A. ;
von Witzleben, M. ;
Boettger, U. ;
Waser, R. ;
Hoffmann-Eifert, S. .
APL MATERIALS, 2019, 7 (09)
[10]   Toward van der Waals epitaxy of transferable ferroelectric barium titanate films via a graphene monolayer [J].
Dai, Liyan ;
Niu, Gang ;
Zhao, Jinyan ;
Zhao, Huifeng ;
Liu, Yiwei ;
Wang, Yankun ;
Zhang, Yijun ;
Wu, Heping ;
Wang, Lingyan ;
Pfuetzenreuter, Daniel ;
Schwarzkopf, Jutta ;
Dubourdieu, Catherine ;
Schroeder, Thomas ;
Ye, Zuo-Guang ;
Xie, Ya-Hong ;
Ren, Wei .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (10) :3445-3451