Toward Autonomous Multi-UAV Wireless Network: A Survey of Reinforcement Learning-Based Approaches

被引:79
作者
Bai, Yu [1 ,2 ]
Zhao, Hui [1 ]
Zhang, Xin [1 ]
Chang, Zheng [1 ,3 ]
Jantti, Riku [2 ]
Yang, Kun [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Aalto Univ, Dept Informat & Commun Engn, Espoo 02150, Finland
[3] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla 40014, Finland
[4] Univ Essex, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, England
关键词
Unmanned aerial vehicle (UAV); multi-UAV wireless network; reinforcement learning; UAV-assisted communication network; UAV-assisted mobile computing; ENERGY-EFFICIENT; RESOURCE-ALLOCATION; TRAJECTORY DESIGN; DATA-COLLECTION; POWER TRANSFER; CELLULAR NETWORKS; IOT; TASK; COMMUNICATION; INTERNET;
D O I
10.1109/COMST.2023.3323344
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicle (UAV)-based wireless networks have received increasing research interest in recent years and are gradually being utilized in various aspects of our society. The growing complexity of UAV applications such as disaster management, plant protection, and environment monitoring, has resulted in escalating and stringent requirements for UAV networks that a single UAV cannot fulfill. To address this, multi-UAV wireless networks (MUWNs) have emerged, offering enhanced resource-carrying capacity and enabling collaborative mission completion by multiple UAVs. However, the effective operation of MUWNs necessitates a higher level of autonomy and intelligence, particularly in decision-making and multi-objective optimization under diverse environmental conditions. Reinforcement Learning (RL), an intelligent and goal-oriented decision-making approach, has emerged as a promising solution for addressing the intricate tasks associated with MUWNs. As one may notice, the literature still lacks a comprehensive survey of recent advancements in RL-based MUWNs. Thus, this paper aims to bridge this gap by providing a comprehensive review of RL-based approaches in the context of autonomous MUWNs. We present an informative overview of RL and demonstrate its application within the framework of MUWNs. Specifically, we summarize various applications of RL in MUWNs, including data access, sensing and collection, resource allocation for wireless connectivity, UAV-assisted mobile edge computing, localization, trajectory planning, and network security. Furthermore, we identify and discuss several open challenges based on the insights gained from our review.
引用
收藏
页码:3038 / 3067
页数:30
相关论文
共 189 条
[1]   Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep Reinforcement Learning Approach [J].
Abedin, Sarder Fakhrul ;
Munir, Md Shirajum ;
Tran, Nguyen H. ;
Han, Zhu ;
Hong, Choong Seon .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (09) :5994-6006
[2]   Energy Efficient UAV-Enabled Mobile Edge Computing for IoT Devices: A Review [J].
Abrar, Muhammad ;
Ajmal, Ushna ;
Almohaimeed, Ziyad M. ;
Gui, Xiang ;
Akram, Rizwan ;
Masroor, Roha .
IEEE ACCESS, 2021, 9 :127779-127798
[3]   Forming a Two-Tier Heterogeneous Air-Network via Combination of High and Low Altitude Platforms [J].
Ahmadinejad, Hosein ;
Falahati, Abolfazl .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) :1989-2001
[4]   UAV-Assisted Content Delivery in Intelligent Transportation Systems-Joint Trajectory Planning and Cache Management [J].
Al-Hilo, Ahmed ;
Samir, Moataz ;
Assi, Chadi ;
Sharafeddine, Sanaa ;
Ebrahimi, Dariush .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (08) :5155-5167
[5]   Autonomous Unmanned Aerial Vehicle navigation using Reinforcement Learning: A systematic review [J].
AlMahamid, Fadi ;
Grolinger, Katarina .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 115
[6]  
Aloysius N, 2017, 2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), P588, DOI 10.1109/ICCSP.2017.8286426
[7]  
Alvarado E., 2022, Drone Market Analysis 20222030
[8]   Deep Reinforcement Learning-Based Mobility-Aware UAV Content Caching and Placement in Mobile Edge Networks [J].
Anokye, Stephen ;
Ayepah-Mensah, Daniel ;
Seid, Abegaz Mohammed ;
Boateng, Gordon Owusu ;
Sun, Guolin .
IEEE SYSTEMS JOURNAL, 2022, 16 (01) :275-286
[9]   Autonomous Navigation via Deep Reinforcement Learning for Resource Constraint Edge Nodes Using Transfer Learning [J].
Anwar, Aqeel ;
Raychowdhury, Arijit .
IEEE ACCESS, 2020, 8 :26549-26560
[10]   Distributed Dynamic Resource Management and Pricing in the IoT Systems With Blockchain-as-a-Service and UAV-Enabled Mobile Edge Computing [J].
Asheralieva, Alia ;
Niyato, Dusit .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (03) :1974-1993