Toward Autonomous Multi-UAV Wireless Network: A Survey of Reinforcement Learning-Based Approaches

被引:51
|
作者
Bai, Yu [1 ,2 ]
Zhao, Hui [1 ]
Zhang, Xin [1 ]
Chang, Zheng [1 ,3 ]
Jantti, Riku [2 ]
Yang, Kun [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Aalto Univ, Dept Informat & Commun Engn, Espoo 02150, Finland
[3] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla 40014, Finland
[4] Univ Essex, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, England
来源
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS | 2023年 / 25卷 / 04期
关键词
Unmanned aerial vehicle (UAV); multi-UAV wireless network; reinforcement learning; UAV-assisted communication network; UAV-assisted mobile computing; ENERGY-EFFICIENT; RESOURCE-ALLOCATION; TRAJECTORY DESIGN; DATA-COLLECTION; POWER TRANSFER; CELLULAR NETWORKS; IOT; TASK; COMMUNICATION; INTERNET;
D O I
10.1109/COMST.2023.3323344
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicle (UAV)-based wireless networks have received increasing research interest in recent years and are gradually being utilized in various aspects of our society. The growing complexity of UAV applications such as disaster management, plant protection, and environment monitoring, has resulted in escalating and stringent requirements for UAV networks that a single UAV cannot fulfill. To address this, multi-UAV wireless networks (MUWNs) have emerged, offering enhanced resource-carrying capacity and enabling collaborative mission completion by multiple UAVs. However, the effective operation of MUWNs necessitates a higher level of autonomy and intelligence, particularly in decision-making and multi-objective optimization under diverse environmental conditions. Reinforcement Learning (RL), an intelligent and goal-oriented decision-making approach, has emerged as a promising solution for addressing the intricate tasks associated with MUWNs. As one may notice, the literature still lacks a comprehensive survey of recent advancements in RL-based MUWNs. Thus, this paper aims to bridge this gap by providing a comprehensive review of RL-based approaches in the context of autonomous MUWNs. We present an informative overview of RL and demonstrate its application within the framework of MUWNs. Specifically, we summarize various applications of RL in MUWNs, including data access, sensing and collection, resource allocation for wireless connectivity, UAV-assisted mobile edge computing, localization, trajectory planning, and network security. Furthermore, we identify and discuss several open challenges based on the insights gained from our review.
引用
收藏
页码:3038 / 3067
页数:30
相关论文
共 50 条
  • [1] Trajectory Design and Resource Allocation for Multi-UAV Networks: Deep Reinforcement Learning Approaches
    Chang, Zheng
    Deng, Hengwei
    You, Li
    Min, Geyong
    Garg, Sahil
    Kaddoum, Georges
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 2940 - 2951
  • [2] Multi-UAV Reinforcement Learning for Data Collection in Cellular MIMO Networks
    Diaz-Vilor, Carles
    Abdelhady, Amr M.
    Eltawil, Ahmed M.
    Jafarkhani, Hamid
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 15462 - 15476
  • [3] Three-Dimension Trajectory Design for Multi-UAV Wireless Network With Deep Reinforcement Learning
    Zhang, Wenqi
    Wang, Qiang
    Liu, Xiao
    Liu, Yuanwei
    Chen, Yue
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) : 600 - 612
  • [4] Dynamic Attention Network for Multi-UAV Reinforcement Learning
    Xu, Dongsheng
    Wu, Shang
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [5] Optimization Design of Multi-UAV Communication Network Based on Reinforcement Learning
    Cao, Zhengyang
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [6] Multi-UAV Dynamic Wireless Networking With Deep Reinforcement Learning
    Wang, Qiang
    Zhang, Wenqi
    Liu, Yuanwei
    Liu, Ying
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (12) : 2243 - 2246
  • [7] Multi-UAV Path Planning for Wireless Data Harvesting With Deep Reinforcement Learning
    Bayerlein, Harald
    Theile, Mirco
    Caccamo, Marco
    Gesbert, David
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2021, 2 : 1171 - 1187
  • [8] Multi-Agent Deep Reinforcement Learning-Based Multi-UAV Path Planning for Wireless Data Collection and Energy Transfer
    Lee, Chungnyeong
    Lee, Sangcheol
    Kim, Taehoon
    Bang, Inkyu
    Lee, Jung Hoon
    Chae, Seong Ho
    2024 FIFTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, ICUFN 2024, 2024, : 500 - 504
  • [9] Multi-UAV Collaborative Detection Based on Reinforcement Learning
    Hao, Yuanhui
    Guo, Chubing
    Ke, Liangjun
    ADVANCES IN SWARM INTELLIGENCE, PT I, ICSI 2024, 2024, 14788 : 463 - 474
  • [10] Federated Deep Reinforcement Learning-Based Multi-UAV Navigation for Heterogeneous NOMA Systems
    Rezwan, Sifat
    Chun, Chanjun
    Choi, Wooyeol
    IEEE SENSORS JOURNAL, 2023, 23 (23) : 29722 - 29732