Rotating Water-Cooled Beryllium Target for a Compact Neutron Source

被引:0
作者
Shvets, P. V. [1 ]
Prokopovich, P. A. [1 ]
Fatyanov, E. I. [1 ]
Clementyev, E. S. [1 ]
Moroz, A. R. [2 ]
Kovalenko, N. A. [2 ,3 ]
Goihman, A. Yu. [1 ]
机构
[1] Immanuel Kant Balt Fed Univ, Res & Educ Ctr Funct Nanomat, Kaliningrad 236041, Russia
[2] Kurchatov Inst, St Peterburg Inst Nucl Phys, Natl Res Ctr, Gatchina 188300, Russia
[3] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia
来源
JOURNAL OF SURFACE INVESTIGATION | 2023年 / 17卷 / 04期
关键词
compact neutron source; DARIA; target assembly; numerical simulation; thermodynamic calculations; beryllium; water-cooled rotating target; LIQUID-LITHIUM TARGET; ACCELERATOR; DESIGN;
D O I
10.1134/S102745102304016X
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
With the declining number of neutron sources in the world and the decommissioning of research reactors, there is a growing interest in developing compact neutron sources. The DARIA project involves the use of a proton beam accelerated to an energy of 13 MeV, which creates a neutron beam through the (p, n) nuclear reaction with a beryllium target. The reaction yield is 3 neutrons per 1000 protons, releasing most of the proton-beam energy as heat in the target, which can cause its destruction if sufficient heat removal is not provided. To address this issue, we develop a rotating water-cooled beryllium target system capable of efficiently removing heat from the target's inner (water facing) surface. We conduct numerical calculations to determine the coolant rate and pressure limits, as well as the corresponding flows leading to target destruction. Thermodynamic calculations make it possible to estimate the system's average temperature and peak local temperatures due to high-energy pulses.
引用
收藏
页码:792 / 798
页数:7
相关论文
共 20 条
  • [1] Aksenov V. L., 1996, PRIRODA, P3
  • [2] FROM THE DISCOVERY OF THE NEUTRON TO THE DISCOVERY OF NUCLEAR-FISSION
    AMALDI, E
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 111 (1-4): : 1 - 332
  • [3] [Anonymous], 2012, NEUTR GEN AN PURP
  • [4] Bayanov B., 2006, Journal of Physics: Conference Series, V41, P460, DOI 10.1088/1742-6596/41/1/051
  • [5] Carpenter John M., 2020, EPJ Web of Conferences, V231, DOI 10.1051/epjconf/202023101001
  • [6] Fernandez-Alonso F., 2014, PHYS PROCEDIA, V60, P125, DOI [10.1016/j.phpro.2014.11.019, DOI 10.1016/J.PHPRO.2014.11.019]
  • [7] NEUTRONS FROM THICK TARGET BERYLLIUM (D,N) REACTIONS AT 1.0MEV TO 3.0MEV
    INADA, T
    KAWACHI, K
    HIRAMOTO, T
    [J]. JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY-TOKYO, 1968, 5 (01): : 22 - &
  • [8] Target-Moderator-Reflector system for 10-30 MeV proton accelerator-driven compact thermal neutron source: Conceptual design and neutronic characterization
    Jeon, Byoungil
    Kim, Jongyul
    Lee, Eunjoong
    Moon, Myungkook
    Cho, Sangjin
    Cho, Gyuseong
    [J]. NUCLEAR ENGINEERING AND TECHNOLOGY, 2020, 52 (03) : 633 - 646
  • [9] Latest design of liquid lithium target in IFMIF
    Nakamura, H.
    Agostini, P.
    Ara, K.
    Cevolani, S.
    Chida, T.
    Ciotti, M.
    Fukada, S.
    Furuya, K.
    Garin, P.
    Gessii, A.
    Guisti, D.
    Heinzel, V.
    Horiike, H.
    Ida, M.
    Jitsukawa, S.
    Kanemura, T.
    Kondo, H.
    Kukita, Y.
    Loesser, R.
    Matsui, H.
    Micciche, G.
    Miyashita, M.
    Muroga, T.
    Riccardi, B.
    Simakov, S.
    Stieglitz, R.
    Sugimoto, M.
    Suzuki, A.
    Tanaka, S.
    Terai, T.
    Yagi, J.
    Yoshida, E.
    Wakai, E.
    [J]. FUSION ENGINEERING AND DESIGN, 2008, 83 (7-9) : 1007 - 1014
  • [10] TRENDS OF MAGNETIC FLUID APPLICATIONS IN JAPAN
    NAKATSUKA, K
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1993, 122 (1-3) : 387 - 394