State of Charge and State of Health estimation in large lithium-ion battery packs

被引:5
|
作者
Bhaskar, Kiran [1 ]
Kumar, Ajith [2 ]
Bunce, James [2 ]
Pressman, Jacob [2 ]
Burkell, Neil [2 ]
Miller, Nathan [2 ]
Rahn, Christopher D. [1 ]
机构
[1] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[2] Wabtec Corp, Erie, PA 16531 USA
来源
2023 AMERICAN CONTROL CONFERENCE, ACC | 2023年
关键词
SOC ESTIMATION; KALMAN FILTER; MANAGEMENT-SYSTEMS; SENSOR BIAS; OF-CHARGE; OBSERVER;
D O I
10.23919/ACC55779.2023.10156326
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate, real-time state of charge (SoC) and state of health (SoH) estimation is essential for lithium-ion battery management systems to ensure safe and extended life of battery packs. For the large battery packs associated with battery electric locomotives and grid applications, computational efficiency is critical, especially for onboard implementation. This paper presents real-time SoC and batch least squares SoH and current sensor bias estimation using measured cell voltage and current from large battery packs. An online gradient-based SoH estimator, coupled with the online SoC estimator, provides real-time onboard health monitoring. The online and offline SoC-SoH algorithms are tested using data from a battery electric locomotive. The SoC-SoH estimation results show tightly clustered capacity, resistance, and current sensor bias estimates for an 11-cell module. The batch and online capacity estimates match to within 5% after the startup transients decay.
引用
收藏
页码:3075 / 3080
页数:6
相关论文
共 50 条
  • [21] State of charge and state of health estimation strategies for lithium-ion batteries
    Wang, Nanlan
    Xia, Xiangyang
    Zeng, Xiaoyong
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2023, 18 : 443 - 448
  • [22] Simultaneous and rapid estimation of state of health and state of charge for lithium-ion battery based on response characteristics of load surges
    Lin, Qiongbin
    Li, Huasen
    Chai, Qinqin
    Cai, Fenghuang
    Zhan, Yin
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [23] State-of-charge Estimation for Lithium-ion Battery using a Combined Method
    Li, Guidan
    Peng, Kai
    Li, Bin
    JOURNAL OF POWER ELECTRONICS, 2018, 18 (01) : 129 - 136
  • [24] State of Charge Estimation for Lithium-Ion Battery Pack With Selected Representative Cells
    Liu, Xingtao
    Xia, Wenlong
    Li, Siyuan
    Lin, Mingqiang
    Wu, Ji
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (02): : 4107 - 4118
  • [25] Battery cell modeling and online estimation of the state of charge of a lithium-ion battery
    Tsai, I-Haur
    Yu, Kuan-Hsun
    Tseng, Alexander
    Yen, Jia-Yush
    Fu, Tseng-Ti
    Huang, Evan
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2018, 41 (05) : 412 - 418
  • [26] A New State of Charge Estimation Method for Lithium-ion Battery Based on Sliding Mode Observer
    Wang, Chunyu
    Cui, Naxin
    Liu, Miao
    Zhang, Chenghui
    2017 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2017, : 5625 - 5630
  • [27] An adaptive state of charge estimation approach for lithium-ion series-connected battery system
    Peng, Simin
    Zhu, Xuelai
    Xing, Yinjiao
    Shi, Hongbing
    Cai, Xu
    Pecht, Michael
    JOURNAL OF POWER SOURCES, 2018, 392 : 48 - 59
  • [28] Current and State of Charge Estimation of Lithium-Ion Battery Packs Using Distributed Fractional Extended Kalman Filters
    Kupper, Martin
    Creutz, Andreas
    Stark, Oliver
    Krebs, Stefan
    Hohmann, Soeren
    2019 3RD IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (IEEE CCTA 2019), 2019, : 479 - 486
  • [29] State of Charge Estimation for Lithium-Ion Battery in Electric Vehicle Based on Kalman Filter Considering Model Error
    Wang, Weihua
    Mu, Jiayi
    IEEE ACCESS, 2019, 7 : 29223 - 29235
  • [30] A fast estimation algorithm for lithium-ion battery state of health
    Tang, Xiaopeng
    Zou, Changfu
    Yao, Ke
    Chen, Guohua
    Liu, Boyang
    He, Zhenwei
    Gao, Furong
    JOURNAL OF POWER SOURCES, 2018, 396 : 453 - 458