State of Charge and State of Health estimation in large lithium-ion battery packs

被引:5
|
作者
Bhaskar, Kiran [1 ]
Kumar, Ajith [2 ]
Bunce, James [2 ]
Pressman, Jacob [2 ]
Burkell, Neil [2 ]
Miller, Nathan [2 ]
Rahn, Christopher D. [1 ]
机构
[1] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[2] Wabtec Corp, Erie, PA 16531 USA
关键词
SOC ESTIMATION; KALMAN FILTER; MANAGEMENT-SYSTEMS; SENSOR BIAS; OF-CHARGE; OBSERVER;
D O I
10.23919/ACC55779.2023.10156326
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate, real-time state of charge (SoC) and state of health (SoH) estimation is essential for lithium-ion battery management systems to ensure safe and extended life of battery packs. For the large battery packs associated with battery electric locomotives and grid applications, computational efficiency is critical, especially for onboard implementation. This paper presents real-time SoC and batch least squares SoH and current sensor bias estimation using measured cell voltage and current from large battery packs. An online gradient-based SoH estimator, coupled with the online SoC estimator, provides real-time onboard health monitoring. The online and offline SoC-SoH algorithms are tested using data from a battery electric locomotive. The SoC-SoH estimation results show tightly clustered capacity, resistance, and current sensor bias estimates for an 11-cell module. The batch and online capacity estimates match to within 5% after the startup transients decay.
引用
收藏
页码:3075 / 3080
页数:6
相关论文
共 50 条
  • [11] Fast Estimation of State of Charge for Lithium-ion Battery
    Chen, Hung-Cheng
    Chou, Shuo-Rong
    Chen, Hong-Chou
    Wu, Shing-Lih
    Chen, Liang-Rui
    2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 284 - 287
  • [12] Review of lithium-ion battery state of charge estimation
    Li, Ning
    Zhang, Yu
    He, Fuxing
    Zhu, Longhui
    Zhang, Xiaoping
    Ma, Yong
    Wang, Shuning
    GLOBAL ENERGY INTERCONNECTION-CHINA, 2021, 4 (06): : 619 - 630
  • [13] Modeling and state of charge estimation of lithium-ion battery
    Xi-Kun Chen
    Dong Sun
    AdvancesinManufacturing, 2015, 3 (03) : 202 - 211
  • [14] Lithium-ion Battery Modeling and State of Charge Estimation
    Wei Xiong
    Mo, Yimin
    Feng Zhang
    INTEGRATED FERROELECTRICS, 2019, 200 (01) : 59 - 72
  • [15] State of Charge and State of Health Estimation of Lithium-Ion Battery Packs With Inconsistent Internal Parameters Using Dual Extended Kalman Filter
    Yang, Fan
    Xu, Yuxuan
    Su, Lei
    Yang, Zhichun
    Feng, Yu
    Zhang, Cheng
    Shao, Tao
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (01)
  • [16] State of charge and state of health estimation of Lithium-Ion batteries
    Buchman, Attila
    Lung, Claudiu
    2018 IEEE 24TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2018, : 382 - 385
  • [17] Fusion estimation of lithium-ion battery state of charge and state of health considering the effect of temperature
    Wang, Chunyu
    Cui, Naxin
    Cui, Zhongrui
    Yuan, Haitao
    Zhang, Chenghui
    JOURNAL OF ENERGY STORAGE, 2022, 53
  • [18] The State of Charge Estimation of Lithium-Ion Battery Based on Battery Capacity
    Li, Junhong
    Jiang, Zeyu
    Jiang, Yizhe
    Song, Weicheng
    Gu, Juping
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (12)
  • [19] Joint Estimation of State of Charge and State of Health of Lithium Ion Battery
    Chen, Peng
    Jin, Xin
    Han, Xue Feng
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (01)
  • [20] Thermal State of Charge Estimation in Phase Change Composites for Passively Cooled Lithium-Ion Battery Packs
    Salameh, Mohamad
    Wilke, Stephen
    Schweitzer, Ben
    Sveum, Peter
    Al-Hallaj, Said
    Krishnamurthy, Mahesh
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (01) : 426 - 436