Piezoelectric energy harvester for scavenging steady internal flow energy: a numerical investigation

被引:11
|
作者
Sarviha, Amir [1 ]
Barati, Ebrahim [1 ]
机构
[1] Khayyam Univ, Dept Mech Engn, Mashhad, Iran
关键词
Piezoelectric; Flexible diaphragm; Energy harvester; Internal flow; CYLINDER; WAKE;
D O I
10.1007/s40430-023-04338-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The wake-induced vibration of a thin piezoelectric (PZT) actuator is examined to explore some aspects of vortex-based energy harvesting. Simulations are conducted at Re = 200, various blockage ratios (0.08 & LE; b & LE; 0.5), and using the PZT actuator on the hosted diaphragm. The endeavor of the present investigation is to discover the effects of vortices and wall confinements at different longitudinal and lateral spacing ratios on the performance of PZT. As an objective of the current study, the aim is to determine the optimal position of the PZT to generate a significant amount of vibration so that maximum energy can be captured. Another connotation of this study regards the possibility of employing a flexible diaphragm on internal walls and harvesting energy, as a self-sufficient system, for remote sensing applications. The longitudinal distance between the center of the upstream cylinder and the center of the diaphragm varies (X-D = 1.0-3.0), while the importance of the blockage ratio on energy harvesting is studied for a laminar flow. The effect of confinement has been incorporated into the present model so that the lift force of a bluff body can be expressed as a function of the blockage ratio. Assuming that the upstream cylinder is stationary, the flexible diaphragm and PZT in the wake of the cylinder can be considered fixed-fixed and cantilever, respectively. Initially, the influence of spacing ratio on downstream wake is investigated by modeling flow around a coupled cylinder-diaphragm. Based on the numerical results, key spacing ratios, longitudinally and laterally, are discovered and introduced for the second part of the simulation. Then, the dynamic response of a flexible PZT and its generated voltage are explored in the second part. Numerical investigations are conducted using two-way fluid structural interaction, and all necessary equations, including fluidic and structural equations, formulated and discussed methodically. Moreover, the present results provide a practical way of designing a system for capturing internal flow energy, which has been poorly documented up to now.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Experimental and numerical analysis on different beam geometries for vibration based piezoelectric energy harvester
    Pradeesh, E. L.
    Udhayakumar, S.
    Vasundhara, M. G.
    Kalavathi, G. K.
    FERROELECTRICS, 2023, 606 (01) : 219 - 238
  • [22] Piezoelectric Energy Harvester for Harnessing Rotational Kinetic Energy through Linear Energy Conversion
    Abdulkhaliq, Habib Sadiq
    Crawley, Fergus
    Luk, Patrick
    Luo, Zhenhua
    ENERGIES, 2023, 16 (18)
  • [23] Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications
    Jasim, Abbas
    Yesner, Greg
    Wang, Hao
    Safari, Ahmad
    Maher, Ali
    Basily, B.
    APPLIED ENERGY, 2018, 224 : 438 - 447
  • [24] Bio-inspired bistable piezoelectric vibration energy harvester: Design and experimental investigation
    Zhou, Jiaxi
    Zhao, Xuhui
    Wang, Kai
    Chang, Yaopeng
    Xu, Daolin
    Wen, Guilin
    ENERGY, 2021, 228 (228)
  • [25] Theoretical Investigation of Bistable Piezoelectric Energy Harvester Using Frequency Down-Conversion
    Abumarar, Hadeel
    Ibrahim, Alwathiqbellah
    Ramini, Abdallah
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVII, 2023, 12483
  • [26] An inclined pedal type piezoelectric energy harvester for pedestrian flow and vehicle safety monitoring
    Sun, Lei
    He, Lipeng
    Li, Zhenheng
    Zhong, Feng
    Yu, Baojun
    Lin, Jieqiong
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2024, 63
  • [27] Investigation of Design Parameters in MEMS Based Piezoelectric Vibration Energy Harvester
    Sil, Indrajit
    Biswas, Kalyan
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES KOLKATA CONFERENCE (IEEE EDKCON), 2018, : 64 - 69
  • [28] On the optimization of piezoelectric vibration energy harvester
    Deng, Licheng
    Wen, Quan
    Jiang, Senlin
    Zhao, Xingqiang
    She, Yin
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2015, 26 (18) : 2489 - 2499
  • [29] Adaptive active piezoelectric energy harvester
    Zhang, Liwei
    Zheng, Guoqiang
    Li, Jishun
    International Journal of Digital Content Technology and its Applications, 2012, 6 (17) : 410 - 419
  • [30] A Novel Composite Piezoelectric Energy Harvester
    Liu, Qinghua
    Yang, Zhigang
    Wu, Yue
    Tu, Qianjin
    Wei, Dongdong
    PROCEEDINGS OF THE 2016 INTERNATIONAL FORUM ON MECHANICAL, CONTROL AND AUTOMATION (IFMCA 2016), 2017, 113 : 891 - 894