Resonant amplification of slow surface plasmon polaritons in a DC current pumped semiconductor/graphene waveguide with a groove defect

被引:2
作者
Zolotovskii, I. O. [1 ]
Dadoenkova, Y. S. [2 ]
Bentivegna, F. F. L. [2 ]
Kadochkin, A. S. [1 ]
Moiseev, S. G. [1 ,3 ]
Svetukhin, V. V. [4 ]
机构
[1] Ulyanovsk State Univ, L Tolstoy Str 42, Ulyanovsk 432970, Russia
[2] Lab STICC UMR 6285, CNRS, ENIB, F-29238 Brest 3, France
[3] Elect Russian Acad Sci, Kotelnikov Inst Radio Engn, Ulyanovsk Branch, Goncharov Str 48, Ulyanovsk 432071, Russia
[4] Sci Mfg Complex Technol Ctr, Shokina Sq 1, Zelenograd 124498, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Graphene; Surface plasmon polaritons; Electric current pump; Amplification; VELOCITY SATURATION; GRAPHENE; SCATTERING; PHOTONICS;
D O I
10.1016/j.optlastec.2023.109593
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose the principle of a planar surface plasmon polariton amplifier composed of a complex waveguide structure based on a semiconductor thin film separated from a dielectric substrate by a graphene monolayer. The amplification of surface plasmon polaritons in that waveguide in the terahertz regime is driven by a direct current in the graphene layer under a synchronism condition that allows an efficient energy exchange from the collective flux of charge carriers in graphene and the surface electromagnetic wave in the semiconductor film. Positive feedback required for resonant amplification is achieved through surface plasmon polariton reflections at the edges of the active waveguide, one of which is formed by a local thickness defect (a groove) at the upper surface of the semiconductor film that also provides an exit channel for the energy of the amplified surface wave to be transferred to an adjacent passive thin film semiconductor waveguide. We determine the conditions required for the resonant amplification of surface plasmon polaritons in that complex structure, which are essentially governed by the geometry of the groove as well as by the characteristic parameters of the active and passive waveguides.
引用
收藏
页数:9
相关论文
共 62 条
[1]  
Adachi S., 1994, GAAS RELATED MAT BUL
[2]   Photonic and Plasmonic Metasensors [J].
Ahmadivand, Arash ;
Gerislioglu, Burak .
LASER & PHOTONICS REVIEWS, 2022, 16 (02)
[3]   Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings [J].
Ahmadivand, Arash ;
Gerislioglu, Burak ;
Ahuja, Rajeev ;
Mishra, Yogendra Kumar .
MATERIALS TODAY, 2020, 32 :108-130
[4]   Ten years of spasers and plasmonic nanolasers [J].
Azzam, Shaimaa, I ;
Kildishev, Alexander, V ;
Ma, Ren-Min ;
Ning, Cun-Zheng ;
Oulton, Rupert ;
Shalaev, Vladimir M. ;
Stockman, Mark, I ;
Xu, Jia-Lu ;
Zhang, Xiang .
LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
[5]   Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices [J].
Bao, Qiaoliang ;
Loh, Kian Ping .
ACS NANO, 2012, 6 (05) :3677-3694
[6]   Surface plasmon-polariton amplifiers and lasers [J].
Berini, Pierre ;
De Leon, Israel .
NATURE PHOTONICS, 2012, 6 (01) :16-24
[7]   Low-scattering surface plasmon refraction with isotropic materials [J].
Bezus, Evgeni A. ;
Doskolovich, Leonid L. ;
Kazanskiy, Nikolay L. .
OPTICS EXPRESS, 2014, 22 (11) :13547-13554
[8]   Scattering of graphene plasmons at abrupt interfaces: An analytic and numeric study [J].
Chaves, A. J. ;
Amorim, B. ;
Bludov, Yu. V. ;
Goncalves, P. A. D. ;
Peres, N. M. R. .
PHYSICAL REVIEW B, 2018, 97 (03)
[9]   Silicon waveguides with graphene: coupling of waveguide mode to surface plasmons [J].
Ctyroky, Jiri ;
Petracek, Jiri ;
Kuzmiak, Vladimir ;
Kwiecien, Pavel ;
Richter, Ivan .
JOURNAL OF OPTICS, 2020, 22 (09)
[10]   Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure [J].
Dadoenkova, Yuliya S. ;
Moiseev, Sergey G. ;
Abramov, Aleksei S. ;
Kadochkin, Aleksei S. ;
Fotiadi, Andrei A. ;
Zolotovskii, Igor O. .
ANNALEN DER PHYSIK, 2017, 529 (05)