Biomimetic Scaffolds for Tendon Tissue Regeneration

被引:21
作者
Huang, Lvxing [1 ]
Chen, Le [2 ]
Chen, Hengyi [1 ]
Wang, Manju [3 ]
Jin, Letian [4 ]
Zhou, Shenghai [4 ]
Gao, Lexin [1 ]
Li, Ruwei [1 ]
Li, Quan [2 ]
Wang, Hanchang [4 ]
Zhang, Can [5 ]
Wang, Junjuan [2 ]
机构
[1] Hangzhou Med Coll, Sch Savaid Stomatol, Hangzhou 310000, Peoples R China
[2] Hangzhou Med Coll, Sch Basic Med Sci & Forens Med, Hangzhou 310000, Peoples R China
[3] Hangzhou Med Coll, Sch Pharm, Hangzhou 310000, Peoples R China
[4] Hangzhou Med Coll, Sch Med Imaging, Hangzhou 310000, Peoples R China
[5] Hunan Univ, Coll Biol, Dept Biomed Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
tissue engineering; tendon regeneration; biomimetic scaffolds; regenerative medicine; MESENCHYMAL STEM-CELLS; BIODEGRADABLE POLYURETHANE SCAFFOLDS; KNITTED SILK SCAFFOLD; MARROW STROMAL CELLS; FORMATION IN-VITRO; ACHILLES-TENDON; BONE-MARROW; ENGINEERED TENDON; NANOFIBROUS SCAFFOLDS; ELECTROSPUN NANOFIBERS;
D O I
10.3390/biomimetics8020246
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tendon tissue connects muscle to bone and plays crucial roles in stress transfer. Tendon injury remains a significant clinical challenge due to its complicated biological structure and poor self-healing capacity. The treatments for tendon injury have advanced significantly with the development of technology, including the use of sophisticated biomaterials, bioactive growth factors, and numerous stem cells. Among these, biomaterials that the mimic extracellular matrix (ECM) of tendon tissue would provide a resembling microenvironment to improve efficacy in tendon repair and regeneration. In this review, we will begin with a description of the constituents and structural features of tendon tissue, followed by a focus on the available biomimetic scaffolds of natural or synthetic origin for tendon tissue engineering. Finally, we will discuss novel strategies and present challenges in tendon regeneration and repair.
引用
收藏
页数:45
相关论文
共 270 条
[1]   Fibrous bone tissue engineering scaffolds prepared by wet spinning of PLGA [J].
Abay Akar, Nergis ;
Gurel Pekozer, Gorke ;
Torun Kose, Gamze .
TURKISH JOURNAL OF BIOLOGY, 2019, 43 (04) :235-245
[2]  
ABRAHAMSSON SO, 1991, SCAND J PLAST RECONS, pUR1
[3]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[4]   Silk matrix for tissue engineered anterior cruciate ligaments [J].
Altman, GH ;
Horan, RL ;
Lu, HH ;
Moreau, J ;
Martin, I ;
Richmond, JC ;
Kaplan, DL .
BIOMATERIALS, 2002, 23 (20) :4131-4141
[5]  
AMIEL D, 1983, CLIN ORTHOP RELAT R, P265
[6]   Biodegradation and biocompatibility of PLA and PLGA microspheres [J].
Anderson, JM ;
Shive, MS .
ADVANCED DRUG DELIVERY REVIEWS, 1997, 28 (01) :5-24
[7]   Regenerative and Resorbable PLA/HA Hybrid Construct for Tendon/Ligament Tissue Engineering [J].
Araque-Monros, M. C. ;
Garcia-Cruz, D. M. ;
Escobar-Ivirico, J. L. ;
Gil-Santos, L. ;
Monleon-Pradas, M. ;
Mas-Estelles, J. .
ANNALS OF BIOMEDICAL ENGINEERING, 2020, 48 (02) :757-767
[8]   Enhancement of in vivo supraspinatus tendon-to-bone healing with an alginate-chitin scaffold and rhBMP-2 [J].
Arvinius, Camilla ;
Civantos, Ana ;
Rodriguez-Bobada, Cruz ;
Javier Rojo, Francisco ;
Perez-Gallego, Daniel ;
Lopiz, Yaiza ;
Marco, Fernando .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2021, 52 (01) :78-84
[9]  
Auras R.A., 2010, POLY LACTIC ACID SYN
[10]   Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review [J].
Bacakova, Lucie ;
Zarubova, Jana ;
Travnickova, Martina ;
Musilkova, Jana ;
Pajorova, Julia ;
Slepicka, Petr ;
Kasalkova, Nikola Slepickova ;
Svorcik, Vaclav ;
Kolska, Zdenka ;
Motarjemi, Hooman ;
Molitor, Martin .
BIOTECHNOLOGY ADVANCES, 2018, 36 (04) :1111-1126