Transformer-basedmodels have dominated many vision and language tasks, including image captioning. However, such models still suffer from the limitation of expressive ability and information loss during dimensionality reduction. In order to solve the above problems, this paper proposes a Complementary Shifted Transformer (CST) for image captioning. We first introduce a complementary Multi-branch Bi-positional encoding Self-Attention (MBSA) module. It utilizes both absolute and relative positional encoding to learn precise positional representations. Meanwhile, MBSA is equipped with Multi-Branch Architecture, which replicates multiple branches for each head. To improve the expressive ability of the model, we utilize the drop branch technique, which trains the branches in a complementary way. Furthermore, we propose a Spatial Shift Augmented module, which takes advantage of both low-level and high-level features to enhance visual features with fewer parameters. To validate our model, we conduct extensive experiments on the MSCOCO benchmark dataset. Compared to the state-of-the-art methods, the proposed CST achieves a competitive performance of 135.3% CIDEr (+0.2%) on the Karpathy split and 136.3% CIDEr (+0.9%) on the official online test server. In addition, we also evaluate the inference performance of our model on a novel object dataset. The source codes and trained models are publicly available at https://github.com/noonisy/CST.