Experimental study of precast self-centering concrete shear walls with external friction dampers

被引:13
|
作者
Liu, Yang [1 ]
Zhou, Wei [1 ,2 ,3 ]
Xie, Xinying [1 ]
机构
[1] Harbin Inst Technol, Sch Civil Engn, 73 Huanghe Rd, Harbin 150090, Heilongjiang, Peoples R China
[2] Harbin Inst Technol & Control, Minist Educ, Key Lab Struct Dynam Behav, 73 Huanghe Rd, Harbin 150090, Heilongjiang, Peoples R China
[3] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disaste, 73 Huanghe Rd, Harbin 150090, Heilongjiang, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Self-centering shear wall; Friction dampers; Post-earthquake recovery; Dissipating capacity; Self-centering ability; LATERAL LOAD BEHAVIOR; SEISMIC PERFORMANCE; DESIGN; PREWEC;
D O I
10.1016/j.jobe.2023.106182
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Self-centering walls perform relatively well in reducing structural damage and residual defor-mation owing to the joint rocking mechanism. Nevertheless, drawbacks of the self-centering walls were limited robustness and redundancy, thus sufficient dissipating capacity is essential for improving stiffness, reducing seismic response, and controlling structural collapse. Among all these dampers used in self-centering systems in previous studies, slip-friction dampers are highly preferred because of their simplicity, perfect rigid-plastic hysteresis characteristic, large stroke, and stable dissipating capacity. After the earthquake ceases, friction force can be eliminated by loosening the tightening bolts to help facilitate post-earthquake recovery, and it is convenient to be replaced or repaired. In the present study, experiments of asymmetric friction dampers with brass-steel interfaces were conducted. To obtain the optimal characteristics for stable dissipating, different configurations of slip-friction dampers were designed and tested. The friction dampers were further installed vertically at the base rocking joint of the self -centering shear walls, and the performance of the walls was studied under horizontal quasi-static cyclic loading. Application of the friction dampers significantly increases the energy dissipating capacity and the post-yield stiffness. The energy dissipating ratio improved up to 81.2% compared to rocking walls with no additional damping. Damage was limited to the brass shims in friction dampers, while wall specimens were able to exhibit up to 3.0% horizontal drift without cracks, degradation, and significant concrete damage at the boundary elements. An average maximum residual drift of both positive and negative directions observed at the end of the test was 0.415% at 3.0% horizontal drift, that major structural realignment is not required, and repair of the structure is practically feasible.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A novel resilient system of self-centering precast reinforced concrete walls with external dampers
    Yagoub, Nouraldaim F. A.
    Wang, Xiuxin
    Dean, Aamir
    Moussa, Amr M. A.
    Mahdi, Elsadig
    JOURNAL OF BUILDING ENGINEERING, 2024, 87
  • [2] Self-centering behavior of unbonded precast concrete shear walls
    Erkmen, B.
    Schultz, A. E.
    EARTHQUAKE RESISTANT ENGINEERING STRUCTURES VI, 2007, 93 : 185 - +
  • [3] Experimental and Analytical Investigation of Self-Centering Precast Composite Walls with Sloped Plane Friction Dampers
    Huang, Wei
    Fan, Zhenhui
    Liu, Kang
    Hu, Gaoxing
    Miao, Xinwei
    Sun, Yujiao
    Liu, Gang
    MATERIALS, 2024, 17 (06)
  • [4] Parametric Study on Self-centering Precast Concrete Frames with Hysteretic Dampers
    Li, Yadong
    Geng, Fangfang
    Ding, Youliang
    Wang, Libin
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2021, 65 (03): : 810 - 824
  • [5] Seismic design and performance of self-centering precast concrete frames with variable friction dampers
    Huang, Linjie
    Clayton, Patricia M.
    Zhou, Zhen
    ENGINEERING STRUCTURES, 2021, 245
  • [6] Experimental study on progressive collapse of self-centering precast concrete frame with infill walls
    Li, Shuang
    Wang, Haoran
    Liu, Haopeng
    Shan, Sidi
    Zhai, Changhai
    ENGINEERING STRUCTURES, 2023, 294
  • [7] Seismic behavior evaluation of precast self-centering shear walls with replaceable friction dampers through shaking table test
    Wang, Jiawei
    Zhou, Wei
    ENGINEERING STRUCTURES, 2025, 328
  • [8] Self-Centering Behavior of Unbonded, Post-Tensioned Precast Concrete Shear Walls
    Erkmen, Bulent
    Schultz, Arturo E.
    JOURNAL OF EARTHQUAKE ENGINEERING, 2009, 13 (07) : 1047 - 1064
  • [9] Seismic response of self-centering precast concrete frames with hysteretic dampers
    Li, Yadong
    Ding, Youliang
    Geng, Fangfang
    Wang, Libin
    STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS, 2019, 28 (08):
  • [10] Experimental investigation and seismic response behavior of a self-centering precast concrete frame with hysteretic dampers
    Geng, Fangfang
    Ding, Youliang
    Wu, Honglei
    Cai, Xiaoning
    Zhang, Yun
    ENGINEERING STRUCTURES, 2021, 240