共 50 条
Optimal lane-changing trajectory planning for autonomous vehicles considering energy consumption
被引:25
作者:
Yao, Zhihong
[1
,2
,3
]
Deng, Haowei
[3
]
Wu, Yunxia
[1
]
Zhao, Bin
[4
]
Li, Gen
[5
]
Jiang, Yangsheng
[1
,2
]
机构:
[1] Southwest Jiaotong Univ, Natl Engn Lab Integrated Transportat Big Data Appl, Chengdu 611756, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Natl United Engn Lab Integrated & Intelligent Tran, Chengdu 611756, Sichuan, Peoples R China
[3] Southwest Jiaotong Univ, Sch Transportat & Logist, Chengdu 611756, Sichuan, Peoples R China
[4] Xihua Univ, Sch Automobile & Transportat, Chengdu 610039, Sichuan, Peoples R China
[5] Nanjing Forestry Univ, Sch Automobile & Traff Engn, Nanjing 210037, Jiangsu, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Lane -changing trajectory;
Fuel consumption;
Autonomous vehicles;
Optimal control;
Nonlinear programming;
NGSIM;
CAR-FOLLOWING MODEL;
FUEL CONSUMPTION;
CONNECTED VEHICLES;
TRAFFIC FLOW;
INSTANTANEOUS SPEED;
OPTIMIZATION;
BEHAVIOR;
ARTERIAL;
MANEUVER;
DRIVEN;
D O I:
10.1016/j.eswa.2023.120133
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The emerging autonomous vehicles (AVs) technologies provide a new opportunity to design a better lanechanging trajectory to reduce traffic congestion. The existing research on lane-changing trajectory planning mainly focuses on fitting trajectory curves, and the lane-changing trajectory is not optimized from the perspective of optimal control. To address this limitation, this paper proposes an optimal lane-changing trajectory planning model for AVs. First, the vehicle lane-changing process is modeled as an optimal control problem to minimize fuel consumption. The control variables are acceleration and steering angle. Second, to simplify the optimal control model, the speed and acceleration are decomposed in X and Y directions. The nonlinear constraints of the optimal control model are transformed into linear constraints. Then, we discretize the time of the optimal control model and simplify the problem into nonlinear programming (NLP). Finally, taking the NGSIM database and polynomial trajectory curve as the benchmark, we verify that the optimal lanechanging trajectory can significantly save energy consumption, with an average reduction of 37.52% and 32.48%. Sensitivity analysis indicates that (1) the minimum fuel consumption of lane-changing trajectory corresponds to optimal lane-changing duration and an optimal longitudinal displacement; (2) the more significant the speed difference (i.e., initial speed and final speed) before and after lane-changing, the greater the fuel consumption of lane-changing; (3) the fuel consumption of lane-changing increases with the increase of lateral displacement.
引用
收藏
页数:12
相关论文