Spatial-temporal traffic performance collaborative forecast in urban road network based on dynamic factor model

被引:5
作者
Tang, Kun [1 ]
Guo, Tangyi [1 ]
Shao, Fei [2 ]
Ma, Yongfeng [3 ]
Khattak, Aemal J. [4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Xiaolingwei 200, Nanjing 210094, Peoples R China
[2] Army Engn Univ PLA, Coll Field Engn, Houbiaoying 88, Nanjing 210007, Peoples R China
[3] Southeast Univ, Sch Transportat, Sipailou 2, Nanjing 210096, Peoples R China
[4] Univ Nebraska Lincoln, Dept Civil Engn, 2200 Vine St, Lincoln, NE 68583 USA
基金
中国国家自然科学基金;
关键词
Traffic State; Multi -step forecast; Dynamic factor model; Traffic performance index; Spatial -temporal correlation; MAXIMUM-LIKELIHOOD-ESTIMATION; TRAVEL-TIME ESTIMATION; ERROR-CORRECTION; STATE ESTIMATION; MULTIVARIATE; PREDICTION; FLOW;
D O I
10.1016/j.eswa.2023.120090
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many urban road networks today are experiencing increasing congestion that threatens not only transport efficiency but also living environment. To solve these problems, providing proactive knowledge of traffic performance is of significant importance. However, due to the inherent uncertainties of the signalized urban road network, it is a challenging work and some gaps still exist. First, the existing approaches are usually limited to a single location or region. Second, traffic flow parameters such as volume are used as a proxy of traffic state. Aiming to fill these gaps, this study developed a dynamic factor model-based approach to forecast the multi-step network traffic states of a group of regions in urban road network collaboratively. The novel model decomposes a set of traffic state time series into two orthogonal components: the common latent factor and the idiosyncratic disturbance. The common latent factor drives the co-movement dynamics of network traffic states, while the idiosyncratic disturbance captures the region-specific distinctions of traffic states in different regions. By extracting the principal variations of traffic states in a group of regions, the proposed model reduces the dimensionality of the traffic state variable from high-dimensional original space to low-dimensional latent factor space. By means of the common latent factor and its evolution over time, spatial-temporal correlations of traffic states in different regions and different time slots are seamlessly incorporated. The proposed model exhibits four distinct advantages, (1) it collaboratively produces forecasts for a group of regions; (2) it considers both comovement dynamics and region-specific distinctions of traffic state; (3) the model incorporates both spatial and temporal correlations seamlessly, and (4) it reduces dimensionality from a network-wide high-dimensional space to a low-dimensional latent factors space. The proposed model is applied to the real urban road network in Shanghai, China, based on the large-scale traffic performance index data released by the Shanghai Transportation Big Data Joint Innovation Laboratory. Empirical results from extensive experiments demonstrate the proposed dynamic factor model provides a promising approach for multi-step network traffic state forecast in urban road network, and outperforms the competing models considered in this study.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Dynamic spatial-temporal model for carbon emission forecasting
    Gong, Mingze
    Zhang, Yongqi
    Li, Jia
    Chen, Lei
    JOURNAL OF CLEANER PRODUCTION, 2024, 463
  • [32] Adaptive spatial-temporal graph attention network for traffic speed prediction
    Zhang, Xijun
    Zhang, Baoqi
    Zhang, Hong
    Nie, Shengyuan
    Zhang, Xianli
    High Technology Letters, 2024, 30 (03) : 221 - 230
  • [33] Attention-based dynamic spatial-temporal graph convolutional networks for traffic speed forecasting
    Zhao, Jianli
    Liu, Zhongbo
    Sun, Qiuxia
    Li, Qing
    Jia, Xiuyan
    Zhang, Rumeng
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 204
  • [34] DPSN-STHA: A dynamic perception model of similar nodes with spatial-temporal heterogeneity attention for traffic flow forecasting
    Yang, Jinnan
    Cui, Wentian
    Shen, Qing
    Lou, Jungang
    INFORMATION SCIENCES, 2025, 712
  • [35] Traffic Spatial-Temporal Prediction Based on Neural Architecture Search
    Zhang, Dongran
    Luo, Gang
    Li, Jun
    PROCEEDINGS OF 2023 18TH INTERNATIONAL SYMPOSIUM ON SPATIAL AND TEMPORAL DATA, SSTD 2023, 2023, : 21 - 30
  • [36] Optimization of spatial-temporal graph: A taxi demand forecasting model based on spatial-temporal tree
    Li, Jianbo
    Lv, Zhiqiang
    Ma, Zhaobin
    Wang, Xiaotong
    Xu, Zhihao
    INFORMATION FUSION, 2024, 104
  • [37] Spatial-Temporal Graph-Enabled Convolutional Neural Network-Based Approach for Traffic Networkwide Travel Time
    Li, Xiantong
    Wang, Hua
    Quan, Wei
    Wang, Jiwu
    An, Pengjin
    Sun, Pengcheng
    Sui, Yuan
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2022, 148 (05)
  • [38] An Extended Cell Transmission Model Based on Digraph for Urban Traffic Road Network
    Han, Xingguang
    Chen, Yangzhou
    Shi, Jianjun
    He, Zhonghe
    2012 15TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2012, : 558 - 563
  • [39] Bidirectional spatial-temporal traffic data imputation via graph attention recurrent neural network
    Shen, Guojiang
    Zhou, Wenfeng
    Zhang, Wenyi
    Liu, Nali
    Liu, Zhi
    Kong, Xiangjie
    NEUROCOMPUTING, 2023, 531 : 151 - 162
  • [40] Forecast and control of traffic noise based on improved UE model during road network design
    Chen, Liang
    Sun, Bin
    Wang, Haibo
    Li, Qiaoru
    Hu, Le
    Chen, Zixuan
    APPLIED ACOUSTICS, 2020, 170 (170)