Spatial-temporal traffic performance collaborative forecast in urban road network based on dynamic factor model

被引:5
|
作者
Tang, Kun [1 ]
Guo, Tangyi [1 ]
Shao, Fei [2 ]
Ma, Yongfeng [3 ]
Khattak, Aemal J. [4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Xiaolingwei 200, Nanjing 210094, Peoples R China
[2] Army Engn Univ PLA, Coll Field Engn, Houbiaoying 88, Nanjing 210007, Peoples R China
[3] Southeast Univ, Sch Transportat, Sipailou 2, Nanjing 210096, Peoples R China
[4] Univ Nebraska Lincoln, Dept Civil Engn, 2200 Vine St, Lincoln, NE 68583 USA
基金
中国国家自然科学基金;
关键词
Traffic State; Multi -step forecast; Dynamic factor model; Traffic performance index; Spatial -temporal correlation; MAXIMUM-LIKELIHOOD-ESTIMATION; TRAVEL-TIME ESTIMATION; ERROR-CORRECTION; STATE ESTIMATION; MULTIVARIATE; PREDICTION; FLOW;
D O I
10.1016/j.eswa.2023.120090
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many urban road networks today are experiencing increasing congestion that threatens not only transport efficiency but also living environment. To solve these problems, providing proactive knowledge of traffic performance is of significant importance. However, due to the inherent uncertainties of the signalized urban road network, it is a challenging work and some gaps still exist. First, the existing approaches are usually limited to a single location or region. Second, traffic flow parameters such as volume are used as a proxy of traffic state. Aiming to fill these gaps, this study developed a dynamic factor model-based approach to forecast the multi-step network traffic states of a group of regions in urban road network collaboratively. The novel model decomposes a set of traffic state time series into two orthogonal components: the common latent factor and the idiosyncratic disturbance. The common latent factor drives the co-movement dynamics of network traffic states, while the idiosyncratic disturbance captures the region-specific distinctions of traffic states in different regions. By extracting the principal variations of traffic states in a group of regions, the proposed model reduces the dimensionality of the traffic state variable from high-dimensional original space to low-dimensional latent factor space. By means of the common latent factor and its evolution over time, spatial-temporal correlations of traffic states in different regions and different time slots are seamlessly incorporated. The proposed model exhibits four distinct advantages, (1) it collaboratively produces forecasts for a group of regions; (2) it considers both comovement dynamics and region-specific distinctions of traffic state; (3) the model incorporates both spatial and temporal correlations seamlessly, and (4) it reduces dimensionality from a network-wide high-dimensional space to a low-dimensional latent factors space. The proposed model is applied to the real urban road network in Shanghai, China, based on the large-scale traffic performance index data released by the Shanghai Transportation Big Data Joint Innovation Laboratory. Empirical results from extensive experiments demonstrate the proposed dynamic factor model provides a promising approach for multi-step network traffic state forecast in urban road network, and outperforms the competing models considered in this study.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Dynamic factor model for network traffic state forecast
    Ma, Tao
    Zhou, Zhou
    Antoniou, Constantinos
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2018, 118 : 281 - 317
  • [2] A Novel Approach to Calculate the Spatial-Temporal Correlation for Traffic Flow Based on the Structure of Urban Road Networks and Traffic Dynamic Theory
    Du, Mao
    Yang, Lin
    Tu, Jiayu
    SENSORS, 2021, 21 (14)
  • [3] DSTGCN: Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Hu, Jia
    Lin, Xianghong
    Wang, Chu
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 13116 - 13124
  • [4] Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Sun, Yanfeng
    Jiang, Xiangheng
    Hu, Yongli
    Duan, Fuqing
    Guo, Kan
    Wang, Boyue
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23680 - 23693
  • [5] Passenger Demand Forecast Model Based on Deformable Convolution Spatial-temporal Network
    Yu R.-Y.
    Lin F.-Y.
    Gao N.-W.
    Li J.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (12): : 3839 - 3851
  • [6] Spatial-Temporal Dynamic Graph Convolutional Network With Interactive Learning for Traffic Forecasting
    Liu, Aoyu
    Zhang, Yaying
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7645 - 7660
  • [7] Dynamic spatial-temporal network for traffic forecasting based on joint latent space representation
    Yu, Qian
    Ma, Liang
    Lai, Pei
    Guo, Jin
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (08) : 1369 - 1384
  • [8] Spatial-temporal hypergraph convolutional network for traffic forecasting
    Zhao, Zhenzhen
    Shen, Guojiang
    Zhou, Junjie
    Jin, Junchen
    Kong, Xiangjie
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [9] Short-term urban traffic forecasting in smart cities: a dynamic diffusion spatial-temporal graph convolutional network
    Yin, Xiang
    Yu, Junyang
    Duan, Xiaoyu
    Chen, Lei
    Liang, Xiaoli
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (02)
  • [10] Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting
    Shao, Zezhi
    Zhang, Zhao
    Wei, Wei
    Wang, Fei
    Xu, Yongjun
    Cao, Xin
    Jensen, Christian S.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (11): : 2733 - 2746