Topological sequence entropy and topological dynamics of tree maps

被引:0
作者
Canovas, Jose S. [1 ]
Daghar, Aymen [2 ,3 ]
机构
[1] Tech Univ Cartagena, Dept Appl Math & Stat, C Doctor Flemming Sn 30-202, Cartagena, Spain
[2] Univ Carthage, Higher Inst Management Bizerte, Dynam Syst & Their Applicat, UR17ES21, Bizerte 7021, Tunisia
[3] Univ Carthage, Fac Sci Bizerte, Dynam Syst & Their Applicat, UR17ES21, Bizerte 7021, Tunisia
关键词
Tree maps; Topological sequence entropy; Chain recurrent set; Non-wandering set; SET;
D O I
10.1016/j.jmaa.2023.127133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a zero topological entropy continuous tree map always displays zero topological sequence entropy when it is restricted to its non-wandering and chain recurrent sets. In addition, we show that a similar result is not possible when the phase space is a dendrite even when we consider only the restriction on the set of periodic points.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 31 条
[11]   Group actions on treelike compact spaces [J].
Glasner, Eli ;
Megrelishvili, Michael .
SCIENCE CHINA-MATHEMATICS, 2019, 62 (12) :2447-2462
[12]  
GOODMAN TNT, 1974, P LOND MATH SOC, V29, P331
[13]   Topological sequence entropy for maps of the interval [J].
Hric, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (07) :2045-2052
[14]  
Hric R., 2000, Comment. Math. Univ. Carol, V41, P53
[15]   Null systems and sequence entropy pairs [J].
Huang, W ;
Li, SM ;
Shao, S ;
Ye, XD .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :1505-1523
[16]   Independence in topological and C-dynamics [J].
Kerr, David ;
Li, Hanfeng .
MATHEMATISCHE ANNALEN, 2007, 338 (04) :869-926
[17]  
KOTOVSKAYA A R, 1968, P123
[18]   Supremum topological sequence entropy of circle maps [J].
Kuang, Rui ;
Yang, Yini .
TOPOLOGY AND ITS APPLICATIONS, 2021, 295
[19]  
Kushnirenko A G., 1967, Russian Math. Surveys, V22, P53, DOI DOI 10.1070/RM1967V022N05ABEH001225
[20]   THE SEQUENCE ENTROPY FOR MORSE SHIFTS AND SOME COUNTEREXAMPLES [J].
LEMANCZYK, M .
STUDIA MATHEMATICA, 1985, 82 (03) :221-241