Topological sequence entropy and topological dynamics of tree maps

被引:0
作者
Canovas, Jose S. [1 ]
Daghar, Aymen [2 ,3 ]
机构
[1] Tech Univ Cartagena, Dept Appl Math & Stat, C Doctor Flemming Sn 30-202, Cartagena, Spain
[2] Univ Carthage, Higher Inst Management Bizerte, Dynam Syst & Their Applicat, UR17ES21, Bizerte 7021, Tunisia
[3] Univ Carthage, Fac Sci Bizerte, Dynam Syst & Their Applicat, UR17ES21, Bizerte 7021, Tunisia
关键词
Tree maps; Topological sequence entropy; Chain recurrent set; Non-wandering set; SET;
D O I
10.1016/j.jmaa.2023.127133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a zero topological entropy continuous tree map always displays zero topological sequence entropy when it is restricted to its non-wandering and chain recurrent sets. In addition, we show that a similar result is not possible when the phase space is a dendrite even when we consider only the restriction on the set of periodic points.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 31 条
[1]   LI-YORKE CHAOS FOR DENDRITE MAPS WITH ZERO TOPOLOGICAL ENTROPY AND ω-LIMIT SETS [J].
Askri, Ghassen .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) :2957-2976
[2]   Commutativity and non-commutativity of topological sequence entropy [J].
Balibrea, F ;
Peña, JSC ;
López, VJ .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (05) :1693-+
[4]  
Canovas J.S., 2001, APPL GEN TOPOL, V2, P1
[5]  
Canovas JS, 2007, DYNAM CONT DIS SER A, V14, P47
[6]   Topological sequence entropy of interval maps [J].
Cánovas, JS .
NONLINEARITY, 2004, 17 (01) :49-56
[7]  
Coppel, 1992, LECT NOTES MATH
[8]  
Daghar A., 2021, ARXIV
[9]  
DEKKING FM, 1980, T AM MATH SOC, V259, P167
[10]   POSITIVE SEQUENCE TOPOLOGICAL-ENTROPY CHARACTERIZES CHAOTIC MAPS [J].
FRANZOVA, N ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) :1083-1086