Investigation of the Properties of a New Class of Interpolation Polynomials Based on Fibonacci Numbers

被引:0
作者
Ebadi, Moosa [1 ]
Haghkhah, Sareh [1 ]
机构
[1] Univ Farhangian, Dept Math, Tehran, Iran
关键词
Fibonacci sequence; Newton interpolation; Forward dif-ferences; Backward differences;
D O I
10.22130/scma.2022.544445.1030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a class of new polynomials based on Fi-bonacci sequence using Newton interpolation is introduced. This target is performed once using Newton forward- divided-difference formula and another more using Newton backward- divided- dif-ference formula. Some interesting results are obtained for forward and backward differences. The relationship between forward (and backward) differences and the Khayyam-Pascal's triangle are also examined.
引用
收藏
页码:133 / 146
页数:15
相关论文
共 8 条
[1]   Generalized Fibonacci Polynomials and Fibonomial Coefficients [J].
Amdeberhan, Tewodros ;
Chen, Xi ;
Moll, Victor H. ;
Sagan, Bruce E. .
ANNALS OF COMBINATORICS, 2014, 18 (04) :541-562
[2]  
Bazm S, 2016, SAHAND COMMUN MATH A, V3, P37
[3]   Legendre Superconvergent Degenerate Kernel and Nystrom Methods for Fredholm Integral Equations [J].
Bouda, Hamza ;
Allouch, Chafik ;
Tahrichi, Mohammed .
SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (01) :45-60
[4]  
Burden R.L., 2016, Numerical analysis, Vtenth
[5]  
Garth D, 2007, J INTEGER SEQ, V10
[6]  
Kincaid D., 2017, NUMERICAL ANAL MATH, VThird
[7]  
Mufid MS, 2016, International Journal of Computing Science and Applied Mathematics, V2, P38
[8]  
Scott T C., 2014, MacTutor History of Mathematics