共 15 条
Finite difference scheme for a non-linear subdiffusion problem with a fractional derivative along the trajectory of motion
被引:1
作者:

Lapin, Alexander V. V.
论文数: 0 引用数: 0
h-index: 0
机构:
Sechenov Univ, Moscow 119435, Russia
Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119333, Russia Sechenov Univ, Moscow 119435, Russia

Shaydurov, Vladimir V. V.
论文数: 0 引用数: 0
h-index: 0
机构:
Russian Acad Sci, Inst Computat Modelling, Siberian Branch, Krasnoyarsk 660036, Russia Sechenov Univ, Moscow 119435, Russia

Yanbarisov, Ruslan M. M.
论文数: 0 引用数: 0
h-index: 0
机构:
Sechenov Univ, Moscow 119435, Russia
Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119333, Russia Sechenov Univ, Moscow 119435, Russia
机构:
[1] Sechenov Univ, Moscow 119435, Russia
[2] Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119333, Russia
[3] Russian Acad Sci, Inst Computat Modelling, Siberian Branch, Krasnoyarsk 660036, Russia
基金:
俄罗斯科学基金会;
关键词:
Diffusion-convection equation;
quasilinear diffusion operator;
variable order fractional material derivative;
finite difference scheme;
stability;
accuracy;
ADVECTION-DIFFUSION EQUATION;
NUMERICAL-METHODS;
ORDER;
D O I:
10.1515/rnam-2023-0003
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The article is devoted to the construction and study of a finite-difference scheme for a one-dimensional diffusion-convection equation with a fractional derivative with respect to the characteristic of the convection operator. It develops the previous results of the authors from [5, 6] in the following ways: the differential equation contains a fractional derivative of variable order along the characteristics of the convection operator and a quasi-linear diffusion operator; a new accuracy estimate is proved, which singles out the dependence of the accuracy of mesh scheme on the curvature of the characteristics.
引用
收藏
页码:23 / 35
页数:13
相关论文
共 15 条
- [1] Numerical methods and analysis for a multi-term time-space variable-order fractional advection-diffusion equations and applications[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 352 : 437 - 452Chen, Ruige论文数: 0 引用数: 0 h-index: 0机构: China Univ Geosci, Sch Sci, Beijing 100083, Peoples R China China Univ Geosci, Sch Sci, Beijing 100083, Peoples R ChinaLiu, Fawang论文数: 0 引用数: 0 h-index: 0机构: Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350116, Fujian, Peoples R China China Univ Geosci, Sch Sci, Beijing 100083, Peoples R ChinaVo Anh论文数: 0 引用数: 0 h-index: 0机构: Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China China Univ Geosci, Sch Sci, Beijing 100083, Peoples R China
- [2] Finite difference approximations for the fractional Fokker-Planck equation[J]. APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 256 - 273Chen, S.论文数: 0 引用数: 0 h-index: 0机构: Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China Quanzhou Normal Univ, Dept Math, Quanzhou 362000, Peoples R China Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, AustraliaLiu, F.论文数: 0 引用数: 0 h-index: 0机构: Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, AustraliaZhuang, P.论文数: 0 引用数: 0 h-index: 0机构: Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, AustraliaAnh, V.论文数: 0 引用数: 0 h-index: 0机构: Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
- [3] A high-order compact exponential scheme for the fractional convection-diffusion equation[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 404 - 416Cui, Mingrong论文数: 0 引用数: 0 h-index: 0机构: Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
- [4] An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation[J]. NUMERICAL ALGORITHMS, 2016, 72 (02) : 393 - 407Hu, Xiuling论文数: 0 引用数: 0 h-index: 0机构: Jiangsu Normal Univ, Sch Math & Stat, Xuzhou, Jiangsu, Peoples R China Jiangsu Normal Univ, Sch Math & Stat, Xuzhou, Jiangsu, Peoples R ChinaLiu, F.论文数: 0 引用数: 0 h-index: 0机构: Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia Jiangsu Normal Univ, Sch Math & Stat, Xuzhou, Jiangsu, Peoples R ChinaTurner, I.论文数: 0 引用数: 0 h-index: 0机构: Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia Jiangsu Normal Univ, Sch Math & Stat, Xuzhou, Jiangsu, Peoples R ChinaAnh, V.论文数: 0 引用数: 0 h-index: 0机构: Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia Jiangsu Normal Univ, Sch Math & Stat, Xuzhou, Jiangsu, Peoples R China
- [5] A New Model of the Problem with a Fractional Derivative Along the Trajectory of Motion[J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (08) : 2194 - 2205Lapin, A.论文数: 0 引用数: 0 h-index: 0机构: Sechenov First Moscow State Med Univ, lnst Comp Sci & Math Modeling, Moscow 119991, Russia Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119991, Russia Sechenov First Moscow State Med Univ, lnst Comp Sci & Math Modeling, Moscow 119991, RussiaYanbarisov, R.论文数: 0 引用数: 0 h-index: 0机构: Sechenov First Moscow State Med Univ, lnst Comp Sci & Math Modeling, Moscow 119991, Russia Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119991, Russia Sechenov First Moscow State Med Univ, lnst Comp Sci & Math Modeling, Moscow 119991, Russia
- [6] A diffusion-convection problem with a fractional derivative along the trajectory of motion[J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2021, 36 (03) : 157 - 163Lapin, Alexander, V论文数: 0 引用数: 0 h-index: 0机构: Sechenov Univ, Moscow 119435, Russia Tianjin Univ Finance & Econ, Coordinated Innovat Ctr Computable Modeling Manag, Tianjin, Peoples R China Sechenov Univ, Moscow 119435, RussiaShaidurov, Vladimir V.论文数: 0 引用数: 0 h-index: 0机构: Tianjin Univ Finance & Econ, Coordinated Innovat Ctr Computable Modeling Manag, Tianjin, Peoples R China Russian Acad Sci, Inst Computat Modelling, Siberian Branch, Krasnoyarsk 660036, Russia Sechenov Univ, Moscow 119435, Russia
- [7] Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation[J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (01) : 12 - 20Liu, F.论文数: 0 引用数: 0 h-index: 0机构: Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia Xiamen Univ, Sch Math Sci, Xiamen 361006, Peoples R China Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, AustraliaZhuang, P.论文数: 0 引用数: 0 h-index: 0机构: Xiamen Univ, Sch Math Sci, Xiamen 361006, Peoples R China Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, AustraliaAnh, V.论文数: 0 引用数: 0 h-index: 0机构: Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, AustraliaTurner, I.论文数: 0 引用数: 0 h-index: 0机构: Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, AustraliaBurrage, K.论文数: 0 引用数: 0 h-index: 0机构: Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
- [8] Numerical methods and analysis for a class of fractional advection-dispersion models[J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 2990 - 3007Liu, F.论文数: 0 引用数: 0 h-index: 0机构: Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, AustraliaZhuang, P.论文数: 0 引用数: 0 h-index: 0机构: Xiamen Univ, Sch Math Sci, Xiangtan, Peoples R China Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, AustraliaBurrage, K.论文数: 0 引用数: 0 h-index: 0机构: Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia Univ Oxford, Dept Comp Sci, Oxford OX1 3LB, England Univ Oxford, OCISB, Oxford OX1 3LB, England Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
- [9] A meshless method for solving the time fractional advection-diffusion equation with variable coefficients[J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (01) : 122 - 133Mardani, A.论文数: 0 引用数: 0 h-index: 0机构: Yazd Univ, Fac Math, Yazd, Iran Yazd Univ, Fac Math, Yazd, IranHooshmandasl, M. R.论文数: 0 引用数: 0 h-index: 0机构: Yazd Univ, Fac Math, Yazd, Iran Yazd Univ, Fac Math, Yazd, IranHeydari, M. H.论文数: 0 引用数: 0 h-index: 0机构: Fasa Univ, Dept Math, Fasa, Iran Yazd Univ, Fac Math, Yazd, IranCattani, C.论文数: 0 引用数: 0 h-index: 0机构: Univ Tuscia, Engn Sch DEIM, Viterbo, Italy Yazd Univ, Fac Math, Yazd, Iran
- [10] DIFFUSION AND FOKKER-PLANCK-SMOLUCHOWSKI EQUATIONS WITH GENERALIZED MEMORY KERNEL[J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (04) : 1006 - 1038Sandev, Trifce论文数: 0 引用数: 0 h-index: 0机构: Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany Radiat Safety Directorate, Skopje 1020, Macedonia Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, GermanyChechkin, Aleksei论文数: 0 引用数: 0 h-index: 0机构: Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine Univ Potsdam, Inst Phys & Astron, D-14776 Potsdam, Germany Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, GermanyKantz, Holger论文数: 0 引用数: 0 h-index: 0机构: Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, GermanyMetzler, Ralf论文数: 0 引用数: 0 h-index: 0机构: Univ Potsdam, Inst Phys & Astron, D-14776 Potsdam, Germany Tampere Univ Technol, Dept Phys, FI-33101 Tampere, Finland Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany