Finite difference scheme for a non-linear subdiffusion problem with a fractional derivative along the trajectory of motion

被引:1
作者
Lapin, Alexander V. V. [1 ,2 ]
Shaydurov, Vladimir V. V. [3 ]
Yanbarisov, Ruslan M. M. [1 ,2 ]
机构
[1] Sechenov Univ, Moscow 119435, Russia
[2] Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119333, Russia
[3] Russian Acad Sci, Inst Computat Modelling, Siberian Branch, Krasnoyarsk 660036, Russia
基金
俄罗斯科学基金会;
关键词
Diffusion-convection equation; quasilinear diffusion operator; variable order fractional material derivative; finite difference scheme; stability; accuracy; ADVECTION-DIFFUSION EQUATION; NUMERICAL-METHODS; ORDER;
D O I
10.1515/rnam-2023-0003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article is devoted to the construction and study of a finite-difference scheme for a one-dimensional diffusion-convection equation with a fractional derivative with respect to the characteristic of the convection operator. It develops the previous results of the authors from [5, 6] in the following ways: the differential equation contains a fractional derivative of variable order along the characteristics of the convection operator and a quasi-linear diffusion operator; a new accuracy estimate is proved, which singles out the dependence of the accuracy of mesh scheme on the curvature of the characteristics.
引用
收藏
页码:23 / 35
页数:13
相关论文
共 15 条
  • [1] Numerical methods and analysis for a multi-term time-space variable-order fractional advection-diffusion equations and applications
    Chen, Ruige
    Liu, Fawang
    Vo Anh
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 352 : 437 - 452
  • [2] Finite difference approximations for the fractional Fokker-Planck equation
    Chen, S.
    Liu, F.
    Zhuang, P.
    Anh, V.
    [J]. APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 256 - 273
  • [3] A high-order compact exponential scheme for the fractional convection-diffusion equation
    Cui, Mingrong
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 404 - 416
  • [4] An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation
    Hu, Xiuling
    Liu, F.
    Turner, I.
    Anh, V.
    [J]. NUMERICAL ALGORITHMS, 2016, 72 (02) : 393 - 407
  • [5] A New Model of the Problem with a Fractional Derivative Along the Trajectory of Motion
    Lapin, A.
    Yanbarisov, R.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (08) : 2194 - 2205
  • [6] A diffusion-convection problem with a fractional derivative along the trajectory of motion
    Lapin, Alexander, V
    Shaidurov, Vladimir V.
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2021, 36 (03) : 157 - 163
  • [7] Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
    Liu, F.
    Zhuang, P.
    Anh, V.
    Turner, I.
    Burrage, K.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 191 (01) : 12 - 20
  • [8] Numerical methods and analysis for a class of fractional advection-dispersion models
    Liu, F.
    Zhuang, P.
    Burrage, K.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 2990 - 3007
  • [9] A meshless method for solving the time fractional advection-diffusion equation with variable coefficients
    Mardani, A.
    Hooshmandasl, M. R.
    Heydari, M. H.
    Cattani, C.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (01) : 122 - 133
  • [10] DIFFUSION AND FOKKER-PLANCK-SMOLUCHOWSKI EQUATIONS WITH GENERALIZED MEMORY KERNEL
    Sandev, Trifce
    Chechkin, Aleksei
    Kantz, Holger
    Metzler, Ralf
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (04) : 1006 - 1038