Vanishing Viscosity Limit for the 3D Incompressible Micropolar Equations in a Bounded Domain

被引:0
作者
Chu, Yangyang [1 ]
Xiao, Yuelong [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
关键词
incompressible micropolar equations; initial- and boundary-value problem; vanishing viscosity limit; NAVIER-STOKES EQUATIONS; GLOBAL WELL-POSEDNESS; INVISCID LIMIT; FLUID SYSTEM; EXISTENCE; UNIQUENESS;
D O I
10.1007/s10473-023-0224-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions. It is shown that there exist global weak solutions of the micropolar equations in a general bounded smooth domain. In particular, we establish the uniform estimate of the strong solutions for when the boundary is flat. Furthermore, we obtain the rate of convergence of viscosity solutions to the inviscid solutions as the viscosities tend to zero (i.e., (epsilon,chi,gamma,kappa) -> 0).
引用
收藏
页码:959 / 974
页数:16
相关论文
共 50 条
  • [41] The vanishing viscosity limit for 2D Navier-Stokes in a rough domain
    Gerard-Varet, David
    Lacave, Christophe
    Nguyen, Toan T.
    Rousset, Frederic
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 119 : 45 - 84
  • [42] The 3D compressible Euler equations with damping in a bounded domain
    Pan, Ronghua
    Zhao, Kun
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (02) : 581 - 596
  • [43] Some regularity criteria for the incompressible 3D MHD equations in bounded domains
    Kim, Jae-Myoung
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (06):
  • [44] Vanishing shear viscosity limit in the magnetohydrodynamic equations
    Fan, Jishan
    Jiang, Song
    Nakamura, Gen
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (03) : 691 - 708
  • [45] Global strong solutions to the 3D incompressible MHD equations with density-dependent viscosity
    Yu, Haibo
    Zhang, Peixin
    Shi, Xiujuan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 2825 - 2834
  • [46] VANISHING VISCOSITY LIMIT FOR COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH TRANSVERSE BACKGROUND MAGNETIC FIELD
    Cui, Xiufang
    Li, Shengxin
    Xie, Feng
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (05) : 1363 - 1392
  • [47] Vanishing viscosity limit for incompressible flow inside a rotating circle
    Lopes Filho, M. C.
    Mazzucato, A. L.
    Lopes, H. J. Nussenzveig
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (10-12) : 1324 - 1333
  • [48] Global vanishing viscosity limit for the two dimensional incompressible viscoelasticity in Lagrangian coordinates
    Cai, Yuan
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [49] On the vanishing viscosity limit for the viscous and resistive 3D magnetohydrodynamic system with axisymmetric data
    Maafa, Youssouf
    Melkemi, Oussama
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (04)
  • [50] Global classical solutions to the 3D isentropic compressible Navier-Stokes equations in a bounded domain
    Yu, Haibo
    Zhao, Junning
    [J]. NONLINEARITY, 2017, 30 (01) : 361 - 381