Vanishing Viscosity Limit for the 3D Incompressible Micropolar Equations in a Bounded Domain

被引:0
|
作者
Chu, Yangyang [1 ]
Xiao, Yuelong [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
关键词
incompressible micropolar equations; initial- and boundary-value problem; vanishing viscosity limit; NAVIER-STOKES EQUATIONS; GLOBAL WELL-POSEDNESS; INVISCID LIMIT; FLUID SYSTEM; EXISTENCE; UNIQUENESS;
D O I
10.1007/s10473-023-0224-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions. It is shown that there exist global weak solutions of the micropolar equations in a general bounded smooth domain. In particular, we establish the uniform estimate of the strong solutions for when the boundary is flat. Furthermore, we obtain the rate of convergence of viscosity solutions to the inviscid solutions as the viscosities tend to zero (i.e., (epsilon,chi,gamma,kappa) -> 0).
引用
收藏
页码:959 / 974
页数:16
相关论文
共 50 条