Vanishing Viscosity Limit for the 3D Incompressible Micropolar Equations in a Bounded Domain

被引:0
|
作者
Chu, Yangyang [1 ]
Xiao, Yuelong [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
关键词
incompressible micropolar equations; initial- and boundary-value problem; vanishing viscosity limit; NAVIER-STOKES EQUATIONS; GLOBAL WELL-POSEDNESS; INVISCID LIMIT; FLUID SYSTEM; EXISTENCE; UNIQUENESS;
D O I
10.1007/s10473-023-0224-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions. It is shown that there exist global weak solutions of the micropolar equations in a general bounded smooth domain. In particular, we establish the uniform estimate of the strong solutions for when the boundary is flat. Furthermore, we obtain the rate of convergence of viscosity solutions to the inviscid solutions as the viscosities tend to zero (i.e., (epsilon,chi,gamma,kappa) -> 0).
引用
收藏
页码:959 / 974
页数:16
相关论文
共 50 条
  • [1] Vanishing Viscosity Limit for the 3D Incompressible Micropolar Equations in a Bounded Domain
    Yangyang Chu
    Yuelong Xiao
    Acta Mathematica Scientia, 2023, 43 : 959 - 974
  • [2] The limit of vanishing viscosity for the incompressible 3D Navier-Stokes equations with helical symmetry
    Jiu, Quansen
    Lopes Filho, Milton C.
    Niu, Dongjuan
    Nussenzveig Lopes, Helena J.
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 : 238 - 246
  • [3] Vanishing Micro-Rotation and Angular Viscosities Limit for the 2D Micropolar Equations in a Bounded Domain
    Chu, Yangyang
    Xiao, Yuelong
    ACTA APPLICANDAE MATHEMATICAE, 2023, 187 (01)
  • [4] Uniform regularity and vanishing viscosity limit for the chemotaxis-Navier-Stokes system in a 3D bounded domain
    Zhang, Zhipeng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7564 - 7597
  • [5] Uniform regularity and vanishing viscosity limit for the incompressible non-resitive magneto-micropolar equations
    Zou, Lin
    Lin, Xueyun
    APPLICABLE ANALYSIS, 2023, 102 (13) : 3549 - 3576
  • [6] Uniform regularity for incompressible MHD equations in a bounded domain with curved boundary in 3D
    Du, Yingzhi
    Luo, Tao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 419 : 175 - 252
  • [7] On the vanishing dissipation limit for the incompressible MHD equations on bounded domains
    Duan, Qin
    Xiao, Yuelong
    Xin, Zhouping
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (01) : 31 - 50
  • [8] Vanishing viscosity limit of the 3D incompressible Oldroyd-B model
    Zi, Ruizhao
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (06): : 1841 - 1867
  • [9] The vanishing viscosity limit for a 3D model of electro-kinetic fluid in a bounded domain
    Jin, Liangbing
    Fan, Jishan
    APPLIED MATHEMATICS LETTERS, 2013, 26 (01) : 154 - 157
  • [10] Vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier-Stokes equations with a slip boundary condition
    Chen, Pengfei
    Xiao, Yuelong
    Zhang, Hui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (16) : 5925 - 5932