Instanton sheaves on projective schemes

被引:5
作者
Antonelli, Vincenzo [1 ]
Casnati, Gianfranco [1 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, C So Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Ulrich sheaf; Instanton sheaf; Fano; 3-fold; Scroll; VECTOR-BUNDLES; ACM BUNDLES; MONADS; MODULI; SPACES;
D O I
10.1016/j.jpaa.2022.107246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A h-instanton sheaf on a closed subscheme X of some projective space endowed with an ample and globally generated line bundle O-X(h) is a coherent sheaf whose cohomology table has a certain prescribed shape. In this paper we deal with h-instanton sheaves relating them to Ulrich sheaves. Moreover, we study h-instanton sheaves on smooth curves and surfaces, cyclic n-folds, Fano 3-folds and scrolls over arbitrary smooth curves. We also deal with a family of monads associated to h-instanton bundles on varieties satisfying some mild extra technical conditions. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:40
相关论文
共 57 条
[1]   SOME APPLICATIONS OF BEILINSON THEOREM TO PROJECTIVE SPACES AND QUADRICS [J].
ANCONA, V ;
OTTAVIANI, G .
FORUM MATHEMATICUM, 1991, 3 (02) :157-176
[2]   H-instanton bundles on three-dimensional polarized projective varieties [J].
Antonelli, V ;
Malaspina, F. .
JOURNAL OF ALGEBRA, 2022, 598 :570-607
[3]   Instanton bundles on the Segre threefold with Picard number three [J].
Antonelli, V. ;
Malaspina, F. .
MATHEMATISCHE NACHRICHTEN, 2020, 293 (06) :1026-1043
[4]   ULRICH BUNDLES ON SMOOTH PROJECTIVE VARIETIES OF MINIMAL DEGREE [J].
Aprodu, M. ;
Huh, S. ;
Malaspina, F. ;
Pons-Llopis, J. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (12) :5117-5129
[5]   Ulrich line bundles on Enriques surfaces with a polarization of degree four [J].
Aprodu M. ;
Kim Y. .
ANNALI DELL'UNIVERSITA' DI FERRARA, 2017, 63 (1) :9-23
[6]  
ARRONDO E, 1989, J REINE ANGEW MATH, V393, P199
[7]  
Arrondo E, 2007, REV MAT COMPLUT, V20, P423
[8]   INSTANTONS AND ALGEBRAIC GEOMETRY [J].
ATIYAH, MF ;
WARD, RS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :117-124
[9]  
Beauville A, 2000, MICH MATH J, V48, P39
[10]   An introduction to Ulrich bundles [J].
Beauville, Arnaud .
EUROPEAN JOURNAL OF MATHEMATICS, 2018, 4 (01) :26-36