Bulk strong matter: the trinity

被引:10
作者
Lai, Xiaoyu [1 ,2 ]
Xia, Chengjun [3 ]
Xu, Renxin [4 ,5 ]
机构
[1] Hubei Univ Educ, Dept Phys & Astron, Wuhan, Peoples R China
[2] Hubei Univ Educ, Res Ctr Astron, Wuhan, Peoples R China
[3] Yangzhou Univ, Coll Phys Sci & Technol, Ctr Gravitat & Cosmol, Yangzhou, Jiangsu, Peoples R China
[4] Peking Univ, Sch Phys, Beijing, Peoples R China
[5] Peking Univ, Kavli Inst Astron & Astrophys, Beijing, Peoples R China
来源
ADVANCES IN PHYSICS-X | 2023年 / 8卷 / 01期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Compact star; dark matter; cosmic ray; quark; neutron star; NUGGET DARK-MATTER; QUARK; GLITCHES; MODEL;
D O I
10.1080/23746149.2022.2137433
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Our world is wonderful because of the normal but negligibly small baryonic part (i.e. atoms) although unknown dark matter and dark energy dominate the Universe. A stable atomic nucleus could be simply termed as 'strong matter' since its nature is dominated by the fundamental strong interaction. Is there any other form of strong matter? Although nuclei are composed of 2-flavoured (i.e. up and down flavours of valence quarks) nucleons, it is conjectured that bulk strong matter could be 3-flavoured (with additional strange quarks) if the baryon number exceeds the critical value, A(c) in which case quarks could be either free (so-called strange quark matter) or localized (in strangeons, coined by combining 'strange nucleon'). Bulk strong matter could be manifested in the form of compact stars, cosmic rays, and even dark matter. This trinity will be explained in this brief review that may impact dramatically on today's physics, particularly in the era of multi-messenger astronomy after the discovery of gravitational wave.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Pulsar glitch recovery and the superfluidity coefficients of bulk nuclear matter
    van Eysden, C. A.
    Melatos, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 409 (03) : 1253 - 1268
  • [22] Relaxation time ansatz and shear and bulk viscosities of gluon matter
    Khvorostukhin, A. S.
    Toneev, V. D.
    Voskresensky, D. N.
    PHYSICAL REVIEW C, 2011, 84 (03):
  • [23] Constraints on the mass-concentration relation of cold dark matter haloes with 11 strong gravitational lenses
    Gilman, Daniel
    Du, Xiaolong
    Benson, Andrew
    Birrer, Simon
    Nierenberg, Anna
    Treu, Tommaso
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 492 (01) : L12 - L16
  • [24] Thermal effect in hot QCD matter in strong magnetic fields
    Wen, Xin-Jian
    Zhang, Jia
    PHYSICAL REVIEW C, 2024, 109 (02)
  • [25] Saturation properties of nuclear matter in the presence of strong magnetic field
    Z. Rezaei
    G. H. Bordbar
    The European Physical Journal A, 2016, 52
  • [26] Detecting dark matter cores in galaxy clusters with strong lensing
    Andrade, Kevin E.
    Minor, Quinn
    Nierenberg, Anna
    Kaplinghat, Manoj
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 487 (02) : 1905 - 1926
  • [27] Cold dark matter and strong gravitational lensing: Concord or conflict?
    Keeton, CR
    ASTROPHYSICAL JOURNAL, 2001, 561 (01) : 46 - 60
  • [28] Search for dark matter using the phenomenon of strong gravitational lensing
    V. S. Tsvetkova
    V. M. Shulga
    V. G. Vakulik
    G. V. Smirnov
    V. N. Dudinov
    A. A. Minakov
    Kinematics and Physics of Celestial Bodies, 2009, 25 : 28 - 37
  • [29] Constraints on the identity of the dark matter from strong gravitational lenses
    Li, Ran
    Frenk, Carlos S.
    Cole, Shaun
    Gao, Liang
    Bose, Sownak
    Hellwing, Wojciech A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (01) : 363 - 372
  • [30] Detecting dark matter substructure spectroscopically in strong gravitational lenses
    Moustakas, LA
    Metcalf, RB
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 339 (03) : 607 - 615