Metric and strong metric dimension in commuting graphs of finite groups

被引:6
作者
Zhai, Liangliang [1 ,2 ]
Ma, Xuanlong [1 ]
Shao, Yong [2 ]
Zhong, Guo [3 ,4 ]
机构
[1] Xian Shiyou Univ, Sch Sci, Xian, Peoples R China
[2] Northwest Univ, Sch Math, Xian, Peoples R China
[3] Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou 510006, Peoples R China
[4] Guangdong Univ Foreign Studies, Guangzhou Key Lab Multilingual Intelligent Proc, Guangzhou, Peoples R China
关键词
Commuting graph; finite group; metric dimension; strong metric dimension;
D O I
10.1080/00927872.2022.2118761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The commuting graph of a finite group is the undirected graph whose vertex set is the set of all elements of this group, and two distinct vertices are adjacent if they commute. In this paper, we characterize the strong metric dimension of the commuting graph of a finite group and give upper and lower bounds for the metric dimension of the commuting graph of a finite group. As applications, we compute the metric and strong metric dimension of the commuting graph of a dihedral group, a generalized quaternion group and a semidihedral group.
引用
收藏
页码:1000 / 1010
页数:11
相关论文
共 33 条
  • [1] Non-commuting graph of a group
    Abdollahi, A
    Akbari, S
    Maimani, HR
    [J]. JOURNAL OF ALGEBRA, 2006, 298 (02) : 468 - 492
  • [2] Characterization of the alternating group by its non-commuting graph
    Abdollahi, Alireza
    Shahverdi, Hamid
    [J]. JOURNAL OF ALGEBRA, 2012, 357 : 203 - 207
  • [3] On the Commuting Graph of Dihedral Group
    Ali, Faisal
    Salman, Muhammad
    Huang, Shuliang
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (06) : 2389 - 2401
  • [4] Base size, metric dimension and other invariants of groups and graphs
    Bailey, Robert F.
    Cameron, Peter J.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 209 - 242
  • [5] ON GROUPS OF EVEN ORDER
    BRAUER, R
    FOWLER, KA
    [J]. ANNALS OF MATHEMATICS, 1955, 62 (03) : 565 - 583
  • [6] The connectivity of commuting graphs
    Bundy, D.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (06) : 995 - 1007
  • [7] On the metric dimension of cartesian products of graphs
    Caceres, Jose
    Hernando, Carmen
    Mora, Merce
    Pelayo, Ignacio M.
    Puertas, Maria L.
    Seara, Carlos
    Wood, David R.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) : 423 - 441
  • [8] GRAPHS DEFINED ON GROUPS
    Cameron, Peter J.
    [J]. INTERNATIONAL JOURNAL OF GROUP THEORY, 2022, 11 (02) : 53 - 107
  • [9] Resolvability in graphs and the metric dimension of a graph
    Chartrand, G
    Eroh, L
    Johnson, MA
    Oellermann, OR
    [J]. DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) : 99 - 113
  • [10] Properties of Commuting Graphs over Semidihedral Groups
    Cheng, Tao
    Dehmer, Matthias
    Emmert-Streib, Frank
    Li, Yongtao
    Liu, Weijun
    [J]. SYMMETRY-BASEL, 2021, 13 (01): : 1 - 15