A Novel Numerical Method for Solving Nonlinear Fractional-Order Differential Equations and Its Applications

被引:7
作者
Lee, Seyeon [1 ]
Kim, Hyunju [2 ]
Jang, Bongsoo [3 ]
机构
[1] Natl Inst Math Sci NIMS, Div Ind Math, Daejeon 34047, South Korea
[2] Korea Inst Energy Technol KENTECH, Dept Energy Engn, Naju 58217, South Korea
[3] Ulsan Natl Inst Sci & Technol UNIST, Dept Math Sci, Ulsan 689798, South Korea
关键词
Atangana-Baleanu fractional derivative; fractional differential equations; predictor-corrector methods; sum-of-exponentials approximation; sub-diffusion equation; COMPUTATION; MODELS; SYSTEM; CHAOS;
D O I
10.3390/fractalfract8010065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, a considerably efficient predictor-corrector method (PCM) for solving Atangana-Baleanu Caputo (ABC) fractional differential equations (FDEs) is introduced. First, we propose a conventional PCM whose computational speed scales with quadratic time complexity O(N2) as the number of time steps N grows. A fast algorithm to reduce the computational complexity of the memory term is investigated utilizing a sum-of-exponentials (SOEs) approximation. The conventional PCM is equipped with a fast algorithm, and it only requires linear time complexity O(N). Truncation and global error analyses are provided, achieving a uniform accuracy order O(h2) regardless of the fractional order for both the conventional and fast PCMs. We demonstrate numerical examples for nonlinear initial value problems and linear and nonlinear reaction-diffusion fractional-order partial differential equations (FPDEs) to numerically verify the efficiency and error estimates. Finally, the fast PCM is applied to the fractional-order Rossler dynamical system, and the numerical results prove that the computational cost consumed to obtain the bifurcation diagram is significantly reduced using the proposed fast algorithm.
引用
收藏
页数:25
相关论文
共 42 条
[1]   Atangana-Baleanu derivative with fractional order applied to the model of groundwater within an unconfined aquifer [J].
Alqahtani, Rubayyi T. .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06) :3647-3654
[2]   Fractional derivatives with no-index law property: Application to chaos and statistics [J].
Atangana, Abdon ;
Gomez-Aguilar, J. F. .
CHAOS SOLITONS & FRACTALS, 2018, 114 :516-535
[3]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[4]   On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernel [J].
Baleanu, Dumitru ;
Jajarmi, Amin ;
Hajipour, Mojtaba .
NONLINEAR DYNAMICS, 2018, 94 (01) :397-414
[5]   RUNGE-KUTTA THEORY FOR VOLTERRA INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
BRUNNER, H ;
HAIRER, E ;
NORSETT, SP .
MATHEMATICS OF COMPUTATION, 1982, 39 (159) :147-163
[6]   A high order schema for the numerical solution of the fractional ordinary differential equations [J].
Cao, Junying ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 238 :154-168
[7]   Fast Runge-Kutta methods for nonlinear convolution systems of volterra integral equations [J].
Capobianco, G. ;
Conte, D. ;
Del Prete, I. ;
Russo, E. .
BIT NUMERICAL MATHEMATICS, 2007, 47 (02) :259-275
[8]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[9]   Models of flux in porous media with memory [J].
Caputo, M .
WATER RESOURCES RESEARCH, 2000, 36 (03) :693-705
[10]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804