A Novel Numerical Method for Solving Nonlinear Fractional-Order Differential Equations and Its Applications

被引:2
|
作者
Lee, Seyeon [1 ]
Kim, Hyunju [2 ]
Jang, Bongsoo [3 ]
机构
[1] Natl Inst Math Sci NIMS, Div Ind Math, Daejeon 34047, South Korea
[2] Korea Inst Energy Technol KENTECH, Dept Energy Engn, Naju 58217, South Korea
[3] Ulsan Natl Inst Sci & Technol UNIST, Dept Math Sci, Ulsan 689798, South Korea
关键词
Atangana-Baleanu fractional derivative; fractional differential equations; predictor-corrector methods; sum-of-exponentials approximation; sub-diffusion equation; COMPUTATION; MODELS; SYSTEM; CHAOS;
D O I
10.3390/fractalfract8010065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, a considerably efficient predictor-corrector method (PCM) for solving Atangana-Baleanu Caputo (ABC) fractional differential equations (FDEs) is introduced. First, we propose a conventional PCM whose computational speed scales with quadratic time complexity O(N2) as the number of time steps N grows. A fast algorithm to reduce the computational complexity of the memory term is investigated utilizing a sum-of-exponentials (SOEs) approximation. The conventional PCM is equipped with a fast algorithm, and it only requires linear time complexity O(N). Truncation and global error analyses are provided, achieving a uniform accuracy order O(h2) regardless of the fractional order for both the conventional and fast PCMs. We demonstrate numerical examples for nonlinear initial value problems and linear and nonlinear reaction-diffusion fractional-order partial differential equations (FPDEs) to numerically verify the efficiency and error estimates. Finally, the fast PCM is applied to the fractional-order Rossler dynamical system, and the numerical results prove that the computational cost consumed to obtain the bifurcation diagram is significantly reduced using the proposed fast algorithm.
引用
收藏
页数:25
相关论文
共 50 条